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Designing and conducting choice experiments

This chapter describes the theory behind experimental design for choice experiments and the process
of designing and conducting choice experiments. It is recommended that Ngene users first familiarise
themselves with this theory, as well as with discrete choice theory in general, before designing choice
experiments and generating experimental designs. Excellent books in discrete choice theory are
Train (2009) and Hensher et al. (2015).

Let us first provide a definition of a choice experiment.

Choice experiment. A stated preference method in which agents are asked to choose
their preferred alternative (most or least) in a series of hypothetical choice tasks. Also
referred to as stated choice experiment, discrete choice experiment, or choice-based conjoint.

Choice experiments have a long history in both academia and practice. Originally designed to
empirically test a range of economic theories, such as the existence of indifference curves (Thurstone,
1931; Mosteller and Nogee, 1951; Rousseas and Hart, 1951; May, 1954; MacCrimmon and Toda, 1969),
stated choice experiments have since gained widespread acceptance across a range of fields in
applied economics, including transportation (e.g., Bliemer and Rose, 2011; Hess et al., 2020; Orttzar
et al., 2021), health (e.g., De Bekker-Grob et al., 2013; Determann et al., 2014; Hansen et al., 2019),
marketing (e.g, He and Oppewal, 2018; Wu et al., 2019; Burke et al,, 2020), and environmental and
resource economics (e.g., Scarpa et al., 2003; MacDonald et al., 2011; Greiner et al., 2014). Despite their
prevalence, the design and implementation of a choice experiment requires far more nuance than
most other survey methods, insofar as the technique requires that the analyst provide respondents
a detailed set of choice situations with which they are expected to interact and respond. A choice
experiment therefore does not simply ask agents what they did in some real-life situation (such data
are called revealed preference data) or how they feel about some statement (as with attitudinal-type
questions), but rather creates hypothetical situations that agents are expected to react to. The purpose
of this chapter is to describe the processes required to generate these hypothetical situations.

Agent. An individual making decisions or a representative of an entity in charge of
making decisions. Also referred to as decision-maker.
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You are looking to buy a new laptop for at home. Which of the
following laptops would you prefer?

Laptop A Laptop B
Intel Core i7 processor Intel Core i5 processor
512 GB hard-disk drive 256 GB hard-disk drive
$2100 $1500
@) ®

Figure 1.1: Laptop choice task

Consider a 70 year old patient with advanced prostate cancer. As his doctor, what treat-
ment would you recommend?

Radiotherapy Surgery Active surveillance
Low risk of permanent High risk of permanent No side effects
side effects side effects
50% probability of curing 70% probability of curing 0% probabilty of curing
patient patient patient
O O ®
® O

Figure 1.2: Treatment choice task

Examples of agents are consumers choosing a product to purchase, patients choosing medication,
travellers choosing a mode of transport, farmers indicating a preference for a certain environmental
policy, company directors choosing a financial strategy, etc.

Choice task. A situation presented to an agent that describes a choice scenario, a choice
set, and a mechanism to capture one or more choice responses.

Choice scenario. A description of the context in which an agent is making a choice.

Choice set. A finite collection of alternatives that an agent can choose from.

Examples of choice tasks are shown in Figures 1.1 and 1.2, where agents are asked to select their
preferred option by radio buttons. Although instructing agents to select their preferred alternative
is most common, there exist other choice response mechanisms. In addition to the single-response
mechanism in Figure 1.3, a dual-response could be asked when a status quo or opt-out alternative
is present in the choice set, see the choice task in Figure 1.2. This choice task first captures the
unforced choice where the choice set includes the status quo alternative ‘Active surveillance’. If
the status quo alternative is chosen, it also asks the agent to make a forced choice (e.g., in case the
patient insists on being treated) where the choice set excludes the status quo alternatives. Other
multi-response mechanisms include instructing agents to select the best and worst alternative or to
select the first, second, and third best alternative. In the remainder of this chapter, it is assumed that
each choice task asks a single question that captures only the first-best choice.

Each alternative in the choice set is described by a profile.
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You are looking to buy a new laptop for use at home. Which of
the following laptops would you prefer?

L 2 L 2
e k‘?i. —————

]

[=]

Figure 1.3: Laptop choice task with images

Profile. A complete representation of an alternative using specific levels of attributes.

Attribute. A quantitative or qualitative factor with which an alternative can be charac-
terised.

Attribute level. A specific numerical or categorical value of an attribute.

For example, the price of the laptop is an attribute in the profiles shown in Figure 1.1, where $2100 is
a specific attribute level. Laptop A is characterised by a profile consisting of an Intel Core i7 processor,
a 512 GB hard-disk drive, and a price of $2100. Profiles vary from choice set to choice set, while the
choice scenario is often fixed over choice sets but may also vary (e.g., the scenario in the choice
task in Figure 1.2 may be varied to investigate the impact of patient age and illness type on choice
behaviour). Although profiles are often shown in table format with text, different formats exist; see,
for example, a graphical representation in Figure 1.3. Images may assist agents in imagining the
alternatives and attributes, although one should be careful not to accidentally influence agents with
factors that are present in the image but not the subject of study (e.g., symbolic colours or mood in
a photo).

Choice experiments are usually part of a larger questionnaire or survey consisting of several parts.
Although the survey flow differs from questionnaire to questionnaire, the first part of a survey
typically involves agents being asked screening questions to judge their eligibility. In the second
part, agents might be asked questions related to their current situation and behaviour related to
the specific study. This information can be used to tailor choice tasks in a choice experiment in
the third part of the survey. The fourth part typically concludes by asking additional questions,
such as questions about general attitudes and perceptions, sociodemographic questions, and open-
ended qualitative questions. Although sociodemographic questions could also be asked earlier in
the survey, attitudinal questions should be asked after the choice experiment to avoid influencing
choice behaviour (Liebe et al., 2021).

Designing and conducting choice experiments can be somewhat complex, consisting of several steps.
The typical steps involved in designing a choice experiment are:

I. Determine whether an experiment is labelled or unlabelled depending on research questions;
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II. Determine alternatives and attributes to include in the experiment;
III. Determine attribute levels and their coding;
IV. Determine experimental design size;
V. Choose experimental design strategy;
VI. Conduct pilot study;
VIL. Conduct main study.

Each step is discussed in more detail in the following sections.

1.1 Step I: Labelled versus unlabelled experiments

The profiles of the alternatives shown in each choice task are based on an underlying full or fractional
factorial experimental design.

Experimental design. A matrix of attribute levels where each row contains a choice
set with profiles that describe the alternatives. The number of rows represents the size
of the collection of choice tasks from which the analyst can sample and give to an agent.

Full factorial design. An experimental design that contains all possible choice tasks
(that is, all possible combinations of attribute levels).

Fractional factorial design. An experimental design that contains a subset of the full
factorial.

Let S denote the set of choice tasks where |S| is referred to as design size. Assume that a subset of these
choice tasks S, C S is given to agent n € {1,..., N}, where N is the sample size of the responding
agents. In each choice task, agents are asked to choose among alternatives in the set J, where |J| is
the number of alternatives in the set of choices. Each choice task s € S, is based on profiles for each
alternative j € J, described by attribute levels in the row vector x,;;. The experimental design matrix
X contains |S| rows where each row contains the profiles of all |J| alternatives, (Xps1, . . ., Xns|J|)-

The size of a full factorial design is obtained by multiplying the number of attribute levels over all
attributes in all alternatives. For example, suppose that there are two alternatives: the first alternative
is characterised by three attributes, and the second alternative is an opt-out alternative without
any attributes. If each attribute has four levels, then the total number of possible attribute level
combinations is 4 X 4 X 4 = 64, hence the full factorial consists of 64 unique choice tasks. A depiction
of this full factorial design with 64 unique choice tasks is shown in Figure 1.4(a) where each side
of the cube represents one of the attributes and each orb represents a unique choice task. Figure
1.4(b) shows an example of a fractional factorial design with 16 choice tasks. The selection of these
16 choice tasks depends on the experimental design strategy (random, orthogonal, or efficient, see
Section 1.5).

Alternatives in a choice set can be of the same type or of different types, commonly described by a

label.

Label. A descriptor that indicates the type of alternative.

A label can, for example, be a product category, a brand name, but can also refer to specific alternative
types such as a status quo or opt-out alternative.

13



(a) Full factorial design (b) Fractional factorial design

Figure 1.4: Depiction of full and fractional factorial designs

Status quo alternative. An existing alternative described by a fixed profile.

Opt-out alternative. An alternative without a profile that represents the option to
choose none of the alternatives presented. Also referred to as no-choice alternative.

The label of an alternative generally impacts choice behaviour because an agent may have positive or
negative associations attached to that label. However, if all alternatives have the same label, then the
label does not play a role in the choice process. Examples where alternatives have the same generic
label can be found in route choice (Route A, Route B, Route C), medication choice (Medication 1,
Medication 2), policy choice (Policy I, Policy II), laptop choice (Laptop 1, Laptop 2), etc. An example
is shown in Figure 1.1, where the alternatives are the same type (i.e., laptops). Such an experiment
is often referred to as an unlabelled experiment.

Unlabelled experiment. A choice experiment where all alternatives have the same
generic label and choice would not be affected if labels were swapped between alterna-
tives.

If some or all of the alternatives have different labels, then choice may be influenced by these labels.
Examples can be found in mode choice (Car 1, Car 2, Train, Bus), treatment choice (Surgery, Radiation
Therapy), smartphone choice (Apple iPhone, Samsung Galaxy, Google Pixel), policy choice (Current
policy [status quo], Policy A, Policy B), activity choice (Activity 1, Activity 2, Neither [opt-out]), etc.
An example is shown in Figure 1.2. This type of experiment is referred to as labelled experiment.

Labelled experiment. A choice experiment where some alternatives have different
labels and choice would be affected if labels were swapped between alternatives.

Based on observations from labelled or unlabelled choice experiments, one can build and estimate
choice models. When modelling choices, the analyst needs to decide which decision rule to adopt as
the theoretical foundation of the model.

14



Decision rule. Criteria that agents are assumed to use when evaluating alternatives and
selecting their preferred option from a choice set.

In this chapter, we focus on random utility maximisation (RUM) (McFadden, 1973) as the dominant
decision rule considered in the choice modelling literature, although other decision rules such as
random regret minimisation (RRM) have also been considered (Chorus, 2012; Van Cranenburgh
and Collins, 2019). Under RUM, it is assumed that agents choose the alternative with the highest
utility when faced with multiple choice options, while RRM assumes that agents aim to minimise
regret after making a decision. Choice models based on RUM and RRM are similar in an unlabelled
experiment with exactly two alternatives but are different otherwise. From here on, we consider
RUM, which requires the specification of utility functions.

Utility function. A mathematical calculation that measures how much an agent values
an alternative as defined by its profile.

The utility functions for all alternatives in an unlabelled experiment are identical, i.e.,
Vnsj:f(xnsj), Vne{l,...,N},Vs €S, Vje], (1.1)

where V), is the systematic utility that agent n attaches to alternative j € J in choice task s € S,
depending on the profile of alternative j defined by the attribute levels in profile x,; and a generic
function f. This function depends on a vector of unknown generic preference parameters f that
describe trade-offs between attributes and attribute levels and are subject to estimation. Function f
can be linear or nonlinear in the attributes, for example

fx1,x2) = Bixy + Poxy + Paxix, (1.2)

where the first two terms describe the main effects of the attributes and the third term describes the
interaction effects. To make model estimation easier, it is common to assume that function f is linear
in the parameters (e.g., one would avoid terms like f; 82) such that each parameter is associated with
exactly one main or interaction effect.

While not relevant at the experimental design stage, in model estimation one would add constants in
|J| — 1 alternatives to account for presentation order effects of alternatives, also known as left-to-right
bias (in countries where one reads from left to right), where alternatives shown on the left (or top)
in the survey may have a higher propensity of being chosen than alternatives shown on the right
(or bottom) (see e.g., Ryan et al., 2018).

The utility function for each alternative in a labelled experiment can be different for each label h € H,

Visj = fn (Xnsj) » Vne{l,...,N},Vs € S,,Vj € Jp, (1.3)

where J, C ] is the subset of alternatives with label h, where }'}, |Ju| = |J| (since each alternative
has a single label) and each alternative within this set has the same linear or nonlinear label-specific
utility function f;,. These functions have preference parameters f3,, which can be label-specific or
generic across labels. The functions also include label-specific constants, where for identifiability
purposes one of them needs to be normalised to zero for a chosen reference label. That is, one
would estimate |M| — 1 label-specific constants. As an example, in the mode choice situation with
alternatives Car 1, Car 2, Train, and Bus, one would specify four alternatives across three labels (Car,
Train, Bus), where Car 1 and Car 2 have identical utility functions. With three labels, the model
identifies two label-specific constants. Note that an opt-out alternative can only have a label-specific
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constant (which may be normalised to zero), while a status quo alternative is described by a regular
utility function using fixed attribute levels. In some experiments, the levels of the status quo may
be agent-specific, taking on values captured earlier in the survey.

In contrast to estimating models using data from an unlabelled experiment, one cannot simply add
alternative-specific constants to account for presentation-order effects of alternatives in a labelled
experiment since such constants would be confounded with (some or all) label-specific constants.
How to account for presentation order effects of alternatives in labelled experiments will be discussed
in Step VI in Section 1.6.

Whether a labelled or unlabelled experiment is suitable for a certain study depends on the research
questions being addressed. If one is interested in determining the willingness-to-pay (WTP) for
certain attribute levels or in determining the relative importance of attributes in decision making,
then it often suffices to consider an unlabelled experiment in which two or more alternatives are
shown as variants of the same label. On the other hand, a labelled experiment is suitable if one
would like to determine market shares of a product type or demand elasticities. An opt-out option
would be included if one is interested in predicting unconditional absolute demand in the market
using unforced choice tasks, while it can be left out if one is only interested in relative market
shares or conditional demand between products that ask for a forced choice (it is worthwhile noting
that evidence suggests that for the same empirical context, the results one obtains from forced and
unforced choice tasks can vary dramatically; see Dhar and Simonson, 2003). A status quo alternative
is often added to determine willingness to deviate from an existing policy or simply to make the
choice task look more familiar to agents. Labelled experiments can also be used to determine WTP
values, particularly if the WTP values are expected to vary across different labelled alternatives (e.g.,
the willingness to pay for travel time savings differs for bus and car use). If, however, WTP values are
expected to be the same across alternatives, then given that labelled experiments generally require
more complex choice tasks and the estimation of a larger number of coefficients, there is no reason
to use a labelled experiment if the sole purpose of the study is to determine WTP values.

Significant differences in the results of choice experiments have been found within the literature
with and without the presence of status quo alternatives (see e.g., Dhar, 1997), the recommendation
being in general that status quo alternatives should be used in such experiments where applicable
(e.g., Adamowicz and Boxall, 2001; Bennett and Blamey, 2001; Bateman et al., 2002). Dhar (1997) found
that the decision to defer the choice (and hence select an opt-out option) is influenced by the absolute
difference in attractiveness among the alternatives. That is, the overall utility of the alternative is
the main driver of selecting a no choice option as opposed to the complexity of attribute trade-offs
necessary when choosing between different alternatives. Boxall et al. (2009) report similar findings
to Dhar (1997), suggesting that increasing task complexity, related to how similar the alternatives
are as described by the attribute levels shown, leads to increased choice of the status quo alternative,
whilst at the same time, the age and level of education of a responding agent may also influence this
choice.

Dhar and Simonson (2003) found that if a forced choice is followed by an unforced choice in a
dual response task, then some alternatives tended to lose proportionally more share than others,
violating the assumption of the independent and identically distributed (IID) model. As such, it may
be necessary to estimate more sophisticated discrete choice models that relax the IID assumption
when data are collected using both forced and unforced choice responses. Brazell et al. (2006) failed
to locate IID violations in a similar experiment, hypothesising that the failure to detect such effects
was likely the result of using a more complex choice experiment involving more attributes than
was used by Dhar and Simonson (2003), concluding that the increased complexity of their design
decreased the prevalence of possible compromise alternatives appearing within the experiment. Rose
and Hess (2009) also explored the use of dual forced/unforced response mechanisms, however, unlike
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the Dhar and Simonson (2003) and Brazell et al. (2006) studies, made use of respondent reported
status quo alternatives as opposed to a simple no-choice alternative. Like Brazell et al. (2006), Rose
and Hess (2009) found no evidence of IID violations between forced and unforced tasks. Rose and
Hess (2009) also reported no differences between the WTP estimates obtained in the dual forced /
unforced response data.

Kontoleon and Yabe (2003) compared a ‘do not buy’ response format to a ‘buy / choose my current
brand’ format. Keeping everything else equal, they found that the relative choice share of the opt-
out alternative was higher in the ‘own brand’ treatment as opposed to the treatment that received
the ‘no purchase’ treatment. They further found differences in parameter estimates for the more
important attributes, while little difference was observed for less salient attributes.

1.2 Step II: Determine alternatives and attributes

Once the study objectives are known and the choice of a labelled or unlabelled experiment has
been made, the analyst must determine which alternatives and attributes to include in the choice
experiment. This is different for each study and while for some studies determining the alternatives
and attributes is straightforward, for other studies, it requires careful consideration of how the
outcomes will be used.

For any experiment, the minimum number of alternatives shown in a choice task is two, that is,
|J| = 2, 0ne of which may be a status quo or opt-out alternative. The larger the number of alternatives,
the more information is captured in each choice task, but also the larger the cognitive burden placed
on the responding agent. In case of an unlabelled experiment, there is generally no need to go beyond
two or three generic alternatives. If the number of attributes is small, then three or four alternatives
may be fine, but with a large number of attributes, one typically restricts the number of alternatives
to two. In case of a labelled experiment, the number of alternatives in each choice task depends
on the number of relevant labels to include, since each label requires at least one alternative, i.e.,
|J;m| = 1, which means that the number of alternatives needs to be larger than or equal to the number
of labels, |J| > |M]|. For example, in a mode choice experiment, one may need to include labels for
Car, Metro, Train, Bus, Bicycle, and Walk, such that the number of alternatives in a choice tasks is at
least six. If there is a risk that a certain label is dominant, e.g., if some agents will always choose Car
no matter what the attribute levels are, then one can consider including two Car alternatives, Car
1 and Car 2, to ensure that all agents make trade-offs across alternatives. If the number of labelled
alternatives is considered too large, one could show only a subset of labelled alternatives in each
choice task, a so-called partial choice set (Bliemer et al., 2018).

Partial choice set. A choice set that only contains a subset of relevant (labelled) alter-
natives.

An experimental design with partial choice sets is referred to as a partial choice set design or an
availability design whereby the implicit assumption is that the alternatives that are not shown in a
choice task are simply not available. This reduces the complexity of each choice task and hence the
cognitive burden on an agent, but requires an increase in the number of choice tasks per agent, or
an increase in sample size, to capture the same amount of information.

Extensive research has been conducted on the impact of the number of alternatives shown in choice
experiments. For example, Adamowicz et al. (2006) found that respondents assigned to a three-
alternative version of a choice experiment were more likely to choose a status quo option than a
two-alternative version. Rolfe and Bennett (2009) report similar findings when comparing two- and
three-alternative versions of a choice experiment. Caussade et al. (2005) found that the number of
alternatives shown to the respondent had the second largest influence on the error variances of
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all the design dimensions they tested and concluded that showing four alternatives is better than
showing three or five alternatives in terms of the impact of scale effects. DeShazo and Fermo (2002)
found a quadratic relationship between the number of alternatives and the variance, suggesting
that error variance first decreases and then increases with the number of alternatives. In contrast,
Arentze et al. (2003) found no error variance differences between the versions of the choice ex-
periments that used two versus three alternatives. Hensher (2004) found that as the number of
alternatives increases, there exists a differential impact on the WTP measures for different attributes
of the design, while Rose et al. (2009) found different impacts on the mean WTP estimates obtained
from the same survey conducted in different countries. Using eye tracking technology, Meifiner
et al. (2020) report that respondents tend to increase the amount of information they process as
the number of alternatives increases, while simultaneously filtering out more pieces of information
when choice tasks include more alternatives. Interestingly, Meifiner et al. found that the respon-
dents almost immediately changed their adopted search strategies when the number of alternatives
changes dramatically (say, from two to five alternatives) from one choice task to another. Weng et al.
(2021) found differences in the WTP results obtained for an unlabelled choice experiment with two
alternatives compared to one with more than two alternatives. They also found that the ability of
agents to identify their preferred alternative improves for experiments consisting of a status quo
and a single additional alternative as the number of attributes increases, but becomes harder when
more alternatives are added.

With respect to attributes, if the objective of the study is to determine specific WTP estimates in
an unlabelled experiment, one could simply include only the attributes under investigation. For
example, it is common in transport to determine the value of travel time using only two attributes,
namely travel time and travel cost (see e.g., Batley et al., 2019), although it is necessary to be careful
to avoid endogeneity bias'. However, if the objective of the study is to forecast demand or market
shares, you would generally include all the attributes that are deemed relevant to make the choice.
Relevant attributes can be identified by reviewing the literature, conducting a series of qualitative
interviews such as focus groups involving a small number of agents (typically less than ten) from
the target population, or personal interviews with experts.

Focus group. A qualitative research technique in which one asks a group of agents
about their rationale for making decisions in the choice context of interest.

Focus groups are often held face-to-face, but can also be conducted online. Although focus groups
may include individual tasks such as writing down the most relevant attributes and ranking them
in order of importance, open-ended group discussions guided by a moderator are at the core. Group
discussions allow participants to agree or disagree and provide a way to identify a range of opinions
and experiences that would be difficult to obtain through surveys.

While considering only a small number of attributes assists in reducing cognitive burden on agents,
it has been argued that relevance is more important than quantity. If a large number of attributes
is deemed relevant, then one can consider showing only a subset of attributes in each choice task.
Such an incomplete profile is typically referred to as a partial profile (see e.g., Chrzan, 2010; Kessels
et al, 2011).

!Endogeneity bias may occur if the true decision calculus used by agents involves interactions between omitted
attributes and attributes used as part of the study. For example, one agent may imagine travel time seated in an empty bus,
while another may imagine travel time standing in a crowded bus, and hence attach more disutility to travel time. In this
case, the omission of crowding as an attribute and its interaction with travel time results in endogeneity bias, invalidating
the assumption that the error term is independent of the systematic component of utility.
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Partial profile. A profile that contains only a subset of relevant attributes.

Showing partial profiles simplifies the choice task, but one will need to increase the number of
choice tasks per agent, or increase the sample size, to ensure that the same amount of information
is obtained. An experimental design that contains partial profiles is referred to as a partial profile
design. Instead of completely omitting some attributes in a choice task, one could instead show
full profiles whereby some attribute levels are overlapping across alternatives. This attribute level
overlap also reduces the number of trade-offs an agent needs to make for each choice task. A design
that is specifically designed to have a given number of overlapping attribute levels is sometimes
referred to as an overlap design or an explicit partial profile design, whereby overlapping attribute
levels are explicitly shown in contrast to an implicit partial profile design that omits attributes and
implicitly assumes that they are overlapping (without showing the attribute level).

Research has tended to show that the number of attributes present within the experiment has an
impact on the behavioural responses provided. Caussade et al. (2005) and DeShazo and Fermo (2002)
report that the number of attributes has a significant impact on the error variance of the models
estimated using the choice experiment data. DeShazo and Fermo (2002) found that, on average, an
increase in the number of attributes leads to an increase in the variance of the error component in
utility of choice experiments, while Caussade et al. (2005) concluded that the number of attributes
used had the largest influence on error variances of all design dimensions. In a similar vein, Arentze
et al. (2003) found that increasing the number of attributes from three to five led to increased error
variances and parameter differences. In support of this argument, Green and Srinivasan (1990) argued
that respondents are incapable of processing many attributes simultaneously and become tired, and
consequently ignore or address attributes in random and uncontrolled ways, or tend to use heuristics
that lead to biased preference measures. Hensher (2006) found that the number of attributes has
a significant influence on parameter estimates and WTP measures, which was also confirmed by
Rose et al. (2009) who found statistically significant differences in WTP measures as the number of
attributes increases. Nevertheless, Rose et al. (2009) report directional differences in the mean WTP
in data sets collected from different countries.

The number of alternatives and attributes shown in each choice task also depends on the survey
instrument. When using a computer-aided personal interviewer (CAPI), one can generally present
more complex choice tasks to each agent given that a personal interviewer can explain the choice
task and answer any questions that the responding agent may have about what they are presented
with. In case of a typical online survey, completed on a computer or smartphone, one would generally
keep the number of alternatives and attributes shown in each choice task limited as agents may be
less engaged with the experiment and therefore spent less time on each choice task.

1.3 Step III: Determine attribute levels and their coding

Attributes can be classified as qualitative (also known as categorical), or quantitative (also referred
to as numerical), and can further be distinguished according to their measurement scale; see Table
1.1.

Attributes with nominal or ordinal scale describe qualitative/categorical data. If an attribute has
nominal scale, then its levels do not have a specific ordering, whereas an attribute with ordinal
scale has levels that describe a certain order. Attributes with an interval or ratio scale describe
quantitative/numerical data, which can be discrete or continuous. Such attributes have an order in
which absolute differences between levels are meaningful, and attributes with a ratio scale also have
an absolute zero point.
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Data type Measurement scale Example attributes with example levels

Colour (red, blue, yellow, green, purple)
Nominal Warranty (yes, no)
Livestock (cattle, sheep, pigs, horses)

Qualitative / Categorical
Comfort (low, medium, high)

Ordinal Side-effects (none, moderate, severe)
Education (primary, secondary, tertiary)

Temperature (5°C, 10°C, 15°C)
Interval Time of day (9am, noon, 5pm, midnight)
Elevation (200 m, 700 m, 1500 m)

Cost ($20, $30, $40, $50)
Ratio Travel time (15 min, 20 min, 25 min)
Distance (1 km, 2 km, 5 km, 10 km)

Quantitative / Numerical

Table 1.1: Data types and measurement scales

The attribute levels in profile x,; for each alternative j shown to agent n in choice task s in experi-
mental design matrix X can be expressed using design coding or estimation coding.

Design coding. A data coding scheme where attribute levels are represented by values
0,...,L, where L is the number of attribute levels.

Estimation coding. A data coding scheme in which attribute levels are converted to
numerical values that are used to calculate utilities in model estimation.

Although design coding is useful in the experimental design phase, attribute levels need to be con-
verted to meaningful values for model estimation. This estimation coding is needed when evaluating
utility functions in Equations (1.1) and (1.3). Estimation coding is also required when generating
efficient designs; see Section 1.5. Various estimation coding schemes exist for qualitative attributes,
where dummy coding and effects coding are the most widely used schemes, but there are other
schemes, such as orthogonal polynomial coding. In each of these coding schemes, an attribute with L
levels is represented by L — 1 variables in the utility function. Each of these coding schemes results
in the same behavioural model and the same model fit, only the interpretation of the values of the
associated parameters differs (Daly et al., 2016). Dummy coding is most easy to interpret since each
parameter corresponding to a dummy coded attribute level corresponds to the contribution to utility
of this level relative to a chosen base level. The interpretation of parameters when using effects
coding is similar except that they express differences with the average utility contribution instead of
differences with the base level. When using orthogonal polynomial coding, the parameters describe
the relationship between the attribute levels and utility in terms of linear effects, quadratic effects,
cubic effects, etc.

Estimation coding for quantitative attributes is typically based on the actual numerical values of
the attribute levels and can enter the utility function as a continuous linear effect, e.g., fx, or a
non-linear effect, e.g., fIn(x) or fx?. The unit in which a quantitative attribute is expressed can be
chosen by the analyst and has no influence on the behavioural model (a parameter associated with
an attribute measured in hours will simply be 60 times larger than a parameter associated with the
same attribute measured in minutes, resulting in the same utility). Although it is possible to use
dummy, effects, or (orthogonal) contrast coding for quantitative attributes using discrete levels, this
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Attribute Level Preference order Design coding Estimation coding

Intel Core i3 3 0 1 0
Processor Intel Core i5 2 1 0 1
Intel Core i7 1 2 0 0
256 GB 3 0 1 0
Hard-disk storage 512 GB 2 1 0 1
1TB 1 2 0 0
$1500 1 0 1500
Price $1800 2 1 1800
$2100 3 2 2100

Table 1.2: Attributes in laptop choice example

makes it more difficult to interpolate/extrapolate beyond these levels in forecasting. Nevertheless,
in some fields of applied economics, such as marketing, it is common practice to do so.

Once the measurement scale of each attribute has been identified, the number of levels can be
determined. For nominal attributes, one typically needs to include all relevant levels (which can be
asked in a focus group discussion, see Step II described in Section 1.2). In case of an ordinal attribute,
one can often choose the number of levels, for example ‘quality’ can be described as low-high, or
as low—-medium-high, or as low-medium-high-very high. In case of ordinal attributes, one may
want to be careful not to cause ambiguity as different agents will understand something different
with respect to ‘medium quality’. If possible, it is best to describe these levels in terms of specific
characteristics, e.g., in terms of durability or referring to standards.

For attributes with interval or ratio scale, the analyst has full flexibility in choosing the number of
attribute levels. For estimating linear effects, two levels are sufficient; however, for nonlinear effects,
one would need more than two levels. Using (orthogonal) polynomial functions, three levels would
allow us to estimate linear and quadratic effects, while four levels would also allow us to estimate
cubic effects. The attribute level range has a large influence on the reliability of the parameter
estimates. In general, a wide attribute level range (e.g., $10 to $50) leads to smaller standard errors
than a narrow range (e.g., $25 to $30), but one should always make sure that the attribute levels
are realistic and appropriate relative to other attributes. Furthermore, in choosing the exact values
of the quantitative levels, one should prefer rounded values (e.g., $5, $10) over values that increase
cognitive burden (e.g., $4.75, $9.90). Finally, one generally prefers equidistance attribute levels that
cover the range equally (e.g. $5, $10, $15) over levels that are not equidistant (e.g., $5, $8, $15), unless
the latter provides a more realistic representation of an attribute.

As an example, consider an unlabelled laptop choice experiment with three attributes, namely pro-
cessor, hard-disk storage, and price. Each attribute is assumed to have three levels, as given in Table
1.2. The processor is measured on an ordinal scale, while hard-disk storage and price have a ratio
measurement scale. The levels have a clear preference order, where 1 is the most preferred level
and 3 is the least preferred level. This ordering allows us to assess whether there exists a strictly
dominant alternative in a choice task. The last two columns in Table 1.2 illustrate the difference
between design coding and estimation coding, where dummy coding is used, selected for the qualita-
tive variables assuming that the last level is the base level. If effects coding is preferred then coding
(0,0) for the last level should be replaced by (-1, -1).

Empirically, the number of attribute levels has been found to have a significant impact on the
behavioural outcomes of choice experiments by several authors. Wittink et al. (1990) found that
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adding an intermediate level to a two-level attribute resulted in increasing the relative importance
of an attribute, and in a subsequent study, Wittink et al. (1992) found that the number of levels
influences the relative importance of an attribute, an effect that was magnified in the presence of
dominated alternatives. Van der Waerden et al. (2004) concluded that the number of attribute levels
can influence choice outcomes, finding that the number of attribute levels present in an experiment
influences the scale of utility. Hensher (2006) found mixed evidence that the number of attribute
levels affects the probability that respondents ignore an attribute when completing the tasks of the
choice experiment, affecting some but not all the attributes contained in the experiment. Caussade
et al. (2005) report that the number of attribute levels employed has a statistically significant impact
on the degree of error variance present within the data; however, they conclude that the impact is
marginal, having the second-lowest effect out of all the design dimensions they varied. Rose et al.
(2009) found that the number of attribute levels used has a significant impact on WTP estimates;
however, these differences depend on the country the data were collected from. Meyerhoff et al.
(2015) found the impact that the number of attributes, alternatives and choice tasks has on modelled
outputs differs according to the socio-demographic profile of the agents, with the biggest impact
being on the drop-out rate of the survey itself. Finally, Oehlmann et al. (2017) found that as the
attribute level range increases, the probability of selecting a status quo alternative increases, likely
due to signals sent to the respondents about the certainty in the options shown throughout the
experiment.

A further dimension of experimental design that has received attention in the past is the effect
that the attribute level range plays on behavioural responses. Meyer and Eagle (1982) and Eagle
(1984) found that attributes with larger ranges produced larger effects than those with smaller
relative ranges, all else being equal. Ohler et al. (2000) on the other hand, found that attribute range
differences affect experimental results in terms of the complexity of functional forms, model fit,
power to detect non-additivity, and between-subject response variability. No effect was found on
model parameters, within-subject response variability, or error variance. In contrast to Ohler et al,,
Caussade et al. (2005) concluded that the attribute range significantly impacts upon error variances,
and that changes to the range that attribute levels take had the third largest influence on the error
variances out of all the design dimensions tested. Hensher (2004) found that increasing the range
of attribute levels resulted in lower mean WTP values, while Rose et al. (2009) found significant
impacts on WTP estimates given changes to attribute level ranges; however, the directions of the
impacts varied across different data sets.

1.4 Step IV: Determine experimental design size

The minimum required experimental design size |S| depends on the total number of parameters to
estimate in the choice model. Let K denote the total number of parameters, including label-specific
constants and coefficients of attributes that are dummy, effects, or contrast coded. There must be
sufficient variation in the design matrix X to estimate these K parameters. When an agent makes
a choice among |J| alternatives in a certain choice task s, this provides the information that the
chosen alternative is preferred over each of the other |J| — 1 alternatives shown to the agent. In other
words, a design X consisting of |S| choice tasks provides |S| - (|J| — 1) pieces of information. To be
able to estimate K parameters, it must hold that |S| - (|J| — 1) > K, in other words, the minimum
size of the design can be determined by finding the smallest integer |S| that satisfies:

K
JI-1

The difference between the actual number of choice tasks in the design and the minimum required
design size is called the degree of freedom.

S| > (1.4)

22



As an example, consider the laptop choice example in Figure 1.1 with the two alternatives, that
is, |J| = 2, each with three attributes and attribute levels as shown in Table 1.2. Assume that the
processor attribute is dummy coded so that it has two associated parameters, whilst storage and
price are assumed to be continuous variables, each with a single parameter such that K = 4. Then
according to (1.4) it should hold that |S| > 4. Although a design matrix of size 4 would be sufficient,
increasing the degrees of freedom (and hence increasing variety in the design data) is recommended
to improve identification of the parameter estimates. It is often recommended to use a design size |S]
that is at least two or three times the minimum required size to have sufficient degrees of freedom.

In choosing |S| one may also want to consider attribute level balance.

Attribute level balance. An experimental design is attribute level balanced if each
attribute level appears the same number of times across all choice tasks.

Considering three levels in our laptop choice example in Table 1.2, attribute level balance could be
guaranteed if the design size is a multiple of three, i.e., 6, 9, 12, etc. If the price attribute has four
levels, then attribute level balance would require |S| to be divisible by three and four, that is, 12, 24,
36, etc. Attribute level balance is not a requirement, but a high degree of attribute level balance is
often desirable to obtain a good coverage over the data space.

If each agent n € {1,..., N} is shown the same choice tasks, that is, S, = S such that each agent
is subject to all choice tasks in the design matrix, then X is referred to as a homogeneous design.
If the number of choice tasks |S]| is too large to show a single agent, then one can move from a
homogeneous design to a heterogeneous design (where S, C S) by blocking the design.

Blocking. A process to split an experimental design matrix into two or more (equal)
subset of choice tasks, known as blocks, where each block preferably has a high degree
of attribute level balance.

For example, suppose that |S| = 24 and one would like to block this design in B equal parts. Then
the design can be divided into blocks of six choice tasks each if B = 4, or blocks of eight choice
tasks each if B = 3, or blocks of 12 choice tasks each if B = 2. The best number of choice tasks to
show to each agent, |S,| = |S|/B, depends on the complexity of each choice task and how many
the analyst believes that an agent can handle without significant fatigue (which is a bigger issue
with online surveys than with face-to-face interviews). Each block essentially represents a different
version of the choice experiment, in which agents are distributed among these blocks (as evenly
as possible). Survey instruments for conducting choice experiments can often automatically assign
blocks to agents from a given design matrix or can randomly select a subset of choice tasks; therefore,
implementing a heterogeneous design is not necessarily complicated. Heterogeneous designs are
generally considered a good choice because they provide more information (Sandor and Wedel,
2005), although a homogeneous design can be justified if the number of parameters to be estimated
is small relative to the number of choice tasks (Kessels, 2016). Instead of first creating an explicit
(large) design matrix, one can also generate random choice tasks on the fly for each agent n, in
which case the design matrix X is implicit.

Mixed evidence exists as to the impact the number of choice tasks has empirically upon choice
experiments. Caussade et al. (2005) and Hensher (2004, 2006) found that the number of choice
tasks acts on the error variance of discrete choice models; however, the effects reported by both
Caussade et al. (2005) and Hensher (2004) were only marginal. Interestingly, Caussade et al. (2005),
keeping the choice context constant while systematically varying all possible design dimensions
in a sample of respondents, found that the number of choice tasks a respondent saw had the least
influence of any of the design dimensions on the error variance of the choice data. Brazell and
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Louviere (1996), keeping all other design dimensions constant, varied only the number of choice
tasks shown to each respondent to be between 16 and 120. In their study, they found evidence of
learning and fatigue effects, however they concluded that there exist no significant differences in
either internal reliability or model variability for models estimated from survey questionnaires with
varying numbers of choice tasks. Likewise, Hensher et al. (2001) reported finding that increasing
the number of choice tasks had only a marginal impact on model elasticities; however, differences
in elasticities were observed when agents were presented with 24 and 32 choice tasks compared to
fewer. Hensher et al. recommend using more than four choice tasks, with 16 being sufficient for most
modelling efforts. Bech et al. (2011) found only minor impacts on the mean WTP estimates obtained
from choice experiments with different numbers of choice tasks, while Rose et al. (2009) found mixed
evidence for the impacts of the number of choice tasks on WTP estimates, with differences observed
between different countries. In this later study, the authors found that the number of choice tasks
had almost no impact on a data set collected within an Australian context, a limited impact on the
same survey collected in Taiwan and a very large impact using the same survey in Chile. More
recently, Czajkowski et al. (2014) report that many observed discrepancies in modelled outcomes
over choice tasks can be mitigated if error variance differences are properly taken into account, while
Campbell et al. (2015) found that failing to account for the effects of learning and fatigue present
within the choice data can significantly affect the WTP outputs. Ochlmann et al. (2017) report that
all else being equal, increasing the number of choice tasks increases the probability that a status quo
alternative will be chosen. Finally, Ochlmann et al. (2017) recommend that, everything else being
equal, between 10 and 15 choice tasks is optimal in practice.

1.5 Step V: Choose experimental design strategy

In this section, we consider design strategies for determining a fractional factorial design (since a
full factorial design is generally too large or undesirable). We assume that the aim is to determine a
design matrix X for the estimation of a conditional logit model, also referred to in the literature as
a multinomial logit model”, which is the workhorse of discrete choice models. Choice probabilities
in the conditional logit model are given by (McFadden, 1973)

(Vns )
Pnsj = > =P ! (1.5)

jeJ eXp(Vnsi),

where utilities V;,; are computed using generic or label-specific functions (1.1) or (1.3) where profiles
Xpsj are represented using estimation coding. The Fisher information matrix for the conditional logit
model is a K X K matrix F that can be computed as (McFadden, 1973)

N
F= Z Z Z (anj - ins)/Pnsj (anj - )_(ns) s with Xns = Z XnsiPnsi- (1-6)

n=1seS, jeJj ie]

Different types of choice models result in different matrices F, for example, Sandor and Wedel (2002)
derived the Fisher information matrix for the cross-sectional mixed logit model, Bliemer et al. (2009)
for the nested logit model and Bliemer and Rose (2010) for the panel mixed logit model. It is possible
to design data specifically around more advanced choice models, but this may come at a significant
computational cost and may even be practically infeasible. Therefore, at the design stage it is common

2McFadden (1973) made a distinction between a multinomial model and a conditional logit model. In his definition, a
multinomial logit model only contains variables related to the respondent (i.e., sociodemographics), whereas a conditional
logit model only contains variables related to the alternatives (i.e., attributes). Therefore, according to these definitions,
conditional logit is the appropriate term when we refer to data in a stated choice experiment. However, in practice, both
sociodemographics and attributes appear in utility functions, and in the literature the term multinomial logit became the
dominant term to indicate this type of model.
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to design the data while having a conditional logit model in mind. Note that this generally does
not prohibit the estimation of more advanced models at a later stage. As noted in Bliemer and Rose
(2010), data that are designed to estimate a conditional logit model will generally also work well to
estimate a panel mixed logit model.

The (asymptotic) variance-covariance matrix of parameter estimates, Q = var( [3) is the inverse of
the Fisher information matrix, i.e., @ = F~!. The diagonal elements of matrix Q are directly related
to the standard errors of the parameter estimates, namely, the standard error of parameter S equals
VO where Qi is the kP diagonal element of matrix Q. A good design matrix X ensures that
each parameter receives (non-zero) Fisher information such that they can all be estimated and that
parameter estimates are reliable (i.e., small standard errors).

From Eqn. (1.6) we can make the following observations. First, Fisher information for the conditional
logit model depends only on attribute levels and choice probabilities, not on choice observations,
therefore, Fisher information can be determined based on experimental design X and best guesses
of the choice probabilities for each alternative and each choice task. The same holds for the cross-
sectional mixed logit model and the nested logit model, but the panel mixed logit model unfortunately
requires simulated choice observations. Second, no Fisher information is obtained for choice tasks
with a strictly dominant alternative (since Fisher information is zero if p,s; — 1 for a certain
alternative j). Third, more Fisher information is obtained if the levels of quantitative attributes are
further apart (wide range). And fourth, in the case of a homogeneous design where all agents face
the same choice tasks, Fisher information increases linearly with the sample size N, which means
that Q is proportional to 1/N so that standard errors decrease at a rate of VN. And finally, Fisher
information is generally reduced if there exists overlap.

Overlap. The situation in which the levels of a generic attribute are the same for two or
more alternatives in a choice task such that no trade-offs are made with respect to this
attribute across these alternatives.

Although in principle more information is captured if overlap in the design is minimal, sometimes
some overlap may be desirable. For example, to reduce the complexity of choice tasks using partial
profiles (see Section 1.2) or when a dominant attribute level exists. To explain the latter, consider
comparing two alternative laptops having brand as an attribute with two levels, Apple and Dell.
Zero overlap means that agents are always forced to choose between a laptop of brand Apple and
a laptop of brand Dell on all choice tasks. Depending on the agent’s preference for an operating
system (MacOS or Windows) they may always choose the alternative with a specific brand and
ignore the other attributes. In this situation, it would be better to allow some overlap such that
agents are also asked to choose between laptops of the same brand (thereby making trade-offs on
the other attributes).

In this section, we discuss three main types of design strategies, namely efficient designs, orthogonal
designs, and random designs, and we discuss the advantages and disadvantages of each strategy.

1.5.1 Efficient designs

Efficient designs have become the state-of-the-art in experimental design in the past decade. Let us
first define efficiency.

Efficient design. An experimental design is efficient if it captures a large amount of

Fisher information. More Fisher information means more precise/reliable parameter
estimates with the same sample size.
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Since it is generally not possible to determine the most efficient design, the typical aim is to generate
a design that is efficient without claiming that it is optimal. To maximise Fisher information, the vol-
ume of matrix F can be maximised, which is equal to minimising the volume of variance-covariance
matrix Q.

A K X K matrix can be represented as a hypercube in K dimensions. The lengths of the edges
of a matrix are given by its eigenvalues A, where Ay is the eigenvalue for dimension k that in
matrix F corresponds to parameter fi, k € {1,...,K}. The eigenvalues are determined via an eigen
decomposition where matrix F is decomposed as F = QAQ ™! where Q is a matrix of eigenvectors
that span the hypercube and A = diag{/,, ..., Ak} is a diagonal matrix with eigenvalues of F, and
the volume can be calculated by multiplying the lengths of the edges of the hypercube. If K = 2 one
multiplies the length and width to obtain the volume of a square, if K = 3 one multiplies the length,
width and height to obtain the volume of a cube, etc. The volume of Fisher information is therefore
given by the determinant of F,

K
det(F) = ]—[ k. (1.7)
k=1

A related measure to the volume of Fisher information is the D-error, which is defined as the deter-
minant of the variance-covariance matrix to the power 1/K to normalise the measure and account
for the number of parameters,

1/K
) _ yk _ 1
D-error = (det (Q)) /" = (det(F)) . (1.8)

As a result, minimising the D-error equals maximising the volume of Fisher information. The lit-
erature commonly refers to D-efficient designs to indicate a low D-error. There does not exist a
general threshold for a ‘good’ D-error value since this is case-specific and cannot be compared across
studies, so all that can be said is that lower is better. It is generally also not possible to compute the
lowest D-error value since this requires an exhaustive evaluation of all possible experimental de-
signs, which is not practically feasible. To illustrate, consider our simple laptop choice example with
two alternatives with the attribute and levels shown in Table 1.2. This means that each alternative
has 3% = 27 unique profiles, such that there exist 272 = 729 choice tasks in a full factorial design
(although not all choice tasks would be sensible). Suppose that one is interested in determining
the most efficient (fractional factorial) design consisting of six choice tasks. Choosing the best six
choice tasks out of 729 possible choice tasks (without replacement) would require the evaluation
of 729!/(729 — 6)! ~ 147,030, 187, 802, 098, 000 unique designs, which would take even the fastest
computer a very long time to complete.

To compute the efficiency of a design, utility functions need to be fully specified, including any
interaction effects, nonlinearities, and estimation coding scheme (e.g., dummy coding). If an analyst
tries to optimise the data for a choice model where one or more parameters are not identifiable
(e.g., due to overspecification, due to lack of variation in attribute levels, or due to self-imposed
multicollinearity via constraints), then the volume of Fisher information will be zero and the D-
error will be infinite/undefined. Therefore, the D-error informs the analyst whether the model as
specified can be estimated based on the specified attribute levels and constraints; a finite D-error
(usually smaller than 1) gives confidence that the data can be used for model estimation.

In addition to D-efficient designs, other design types such as A-efficient designs (see e.g., Huber
and Zwerina, 1996), or C-efficient designs exist (see e.g., Scarpa and Rose, 2008). An A-efficient
design minimises A-error related to the circumference, instead of volume, of the Fisher information
matrix, and a C-eflicient design is used when optimisation of some function of parameters is of
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interest, such as WTP estimates. Many other efficient design types exist (see Kessels et al., 2006),
all measuring information in a slightly different way, but D-error is by far the most widely used
information criterion and is recommended in most cases.

The main advantage of using an efficient design is that it captures (near) maximum information
for a specific model, which means that it enables significant and/or reliable parameter estimates at
smaller sample sizes that other design strategies. This makes efficient designs particularly useful if
one is restricted either by budget or by a limited population of specific agents (e.g., pilots, physicians,
patients with a certain disease, managers in a firm, etc.). In addition, efficient designs are very flexible
and can be used in conjunction with various constraints on attribute levels (Collins et al., 2014), for
example to avoid attribute levels that are unrealistic or impossible, and can avoid strictly dominant
alternatives (Bliemer et al., 2017). The main disadvantages of an efficient design strategy are that
efficient designs cannot be determined manually and require the use of optimisation algorithms,
and that efficiency is sensitive to prior information about the expected choice probabilities in each
choice task. To determine these expected choice probabilities, so-called priors are needed.

Different types of priors can be used to generate efficient designs. Although priors in experimental
design have a somewhat different meaning than priors in Bayesian statistics, we use similar termi-
nology to indicate the various types of priors. Two main types of prior can be distinguished, namely
noninformative priors and informative priors.

Noninformative prior. An expression of the analyst’s belief regarding the value of an
unknown parameter value based on minimal information. This generally means assum-
ing zero as a local prior or assuming a flat distribution around zero as a Bayesian prior.
If knowledge of the sign of the parameter is available, then one can use a value close to
zero with the correct sign or a flat distribution bounded by zero.

Informative prior. A best guess of an unknown parameter value based on information
from a previous experiment (that is, a pilot study or a similar study described in the
literature) or via subjective assessment of an expert. This generally means assuming the
mean value provided by available evidence as a local prior or assuming a probability
distribution (Bayesian prior) where the density is concentrated around this mean value.

Informative priors help to increase the efficiency of data collection, but may not be available. A pilot
study is the best source for prior information; one should be careful adopting parameter values from
other studies since parameter estimates may not be transferable due to scale, culture, and country
effects. For information on expert judgement, we refer for example to Bliemer and Collins (2016).
In practice, one would typically not mix informative and noninformative priors when generating
an efficient design, but it is fine to mix local and Bayesian priors. Table 1.3 shows examples of the
various types of priors. The more these priors (set when generating an efficient design) deviate
from the true parameter values (obtained via model estimation after the data collection), the more
efficiency will be lost. Choosing bad priors can also lead to inefficient designs (see for example the
simulation study described in Walker et al., 2018), therefore choosing appropriate priors needs to be
done deliberately, and if uncertain, it is best to choose noninformative (zero) priors or conservative
(close to zero) priors.

Several algorithms exist to locate efficient designs. These algorithms minimise the D-error by modi-
fying columns, rows, or cells within the experimental design matrix; see Figure 1.5. A coordinate-
exchange algorithm such as proposed by Meyer and Nachtsheim (1995) changes a single cell at
the same is mainly useful for generating efficient designs without constraints. Column-based algo-
rithms (e.g., Huber and Zwerina, 1996) are particularly useful for designs with attribute level balance
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Local Bayesian

Br = —0.5, Br ~ Normal(-0.5,0.2),
Informative priors Pr = 0.8, Pr ~ Normal(0.8,0.5),

Br = 1.2, Br ~ Lognormal(1.2,0.9)

B =0, Pr ~ Uniform(-1, 1),
Noninformative priors Br = —0.00001, Pr ~ Uniform(—1,0),

Br = 0.00001, Br ~ Uniform(0, 0.5)

Table 1.3: Types of priors and examples

1 4 6 0 1 4 6 0 1 4 6 0
C 2 2 3 2 2 2 3 2 O® 2 3 2
3 2 1 1 3 2 1 1 3 2 1 1
1 4 2 2 1 4 2 2 1 4 2 2
2 4 5 1 — 02 4 5 1 2 4 5 1
3 2 4 0 3 2 4 0 3 2 4 0
3 4 6 0 1 4 6 0 1 4 6 0
2 2 3 2 2 2 3 2 3 2 3 2
1 2 1 1 3 2 1 1 3 2 1 1
1 4 2 2 1 4 2 2 1 4 2 2
2 4 5 1 S 2 1 2 2 4 5 1
3 2 4 0 3 2 4 0 3 2 4 0
(a) Column-based (b) Row-based (c) Cell-based

Figure 1.5: Algorithms to find efficient designs

constraints as they swap attribute levels within a column, and row-based algorithms such as the
modified Fedorov algorithm (Cook and Nachtsheim, 1980) select and exchange entire rows from
a candidate set and are particularly useful for designs with many dominance constraints or other
restrictions on attribute level combinations within a choice task.

Candidate set. A list of possible choice tasks from which a subset is chosen to form an
experimental design. Such a candidate set could be a large random fractional factorial
design or could be externally created by the analyst.

1.5.2 Orthogonal designs

Orthogonal designs have been used for choice experiments since the 1980s and have been the default
design approach for several decades. Let us first define orthogonality.

Orthogonal design. An experimental design is orthogonal if for each two attributes,
each pair of attribute levels appears equally across the choice tasks.

The above definition of orthogonality is based on strength 2 orthogonality, where pairs of attribute
levels across two attributes are considered. There also exist orthogonal designs with a higher strength
where attribute level combinations across more than two attributes appear equally across the choice
tasks, but such designs are rare. Based on this definition of orthogonality, attribute level balance
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can be considered as strength 1 orthogonality. An orthogonal design matrix X is often referred to
in statistics as an orthogonal array. If attributes have different numbers of levels, then such arrays
are referred to as mixed orthogonal arrays, in contrast to conventional fixed-level orthogonal arrays
(Hedayat et al., 1999).

The main advantages of orthogonal designs are that they cover the attribute space consistently,
and no skills or running algorithms are required since they can be found in lookup tables in books
(e.g., Hahn and Shapiro, 1967) or in online libraries (simply conduct a web-search for ‘orthogonal
array’ to find the most recent sets of (mixed) orthogonal arrays as new arrays are being found and
added over time). Furthermore, orthogonal arrays allow for blocking of the design matrix in such
a way that it maintains perfect attribute level balance within each block. Several disadvantages of
orthogonal designs exist. First, orthogonal arrays only exist for specific combinations of the number
of attributes and attribute levels. If attributes have a varying number of levels where some have
more than four levels, then an orthogonal array may not exist. Secondly, orthogonal arrays have a
very rigid structure, which means that it is generally not possible to impose constraints on attribute
levels or avoid strictly dominant alternatives. One could manually remove choice tasks from the
orthogonal design that violate certain constraints or contain strictly dominant alternatives, but that
would mean that the design is no longer orthogonal. Orthogonality is also lost in the data when
considering interaction effects in the utility function that were not considered when locating an
orthogonal array, when using dummy or effects coding, or when there are missing observations
such as unequal representation of blocks in the data or unanswered choice tasks due to fatigue.

There exists a relationship between orthogonality and correlation. If the levels of two attributes are
orthogonal, then they have zero correlation.

Attribute level correlation. A measure between the levels of two or more attributes that
indicates their level of dependence, where zero correlation means complete independence
and a correlation of 1 or —1 means perfect (positive or negative) dependence.

It is easy to compute correlations between attribute levels and if the correlation in the levels across
some attributes is not zero, then the design is not orthogonal. Although zero correlation is a necessary
condition for orthogonality, it is not a sufficient condition. This means that zero correlation does
not necessarily imply orthogonality.

Attribute levels in (fixed-level or mixed) orthogonal designs are uncorrelated; therefore, multi-
collinearity is avoided by definition. Independent estimation of parameters has often been claimed
as a benefit of using orthogonal designs, but it should be noted that this benefit holds for estimating
linear regression models and does not hold for estimating choice models. To explain this, we first
introduce the concept of utility balance.

Utility balance. A choice task is utility balanced if the utility of each alternative is the
same, which implies that each alternative has the same choice probability. This is also
referred to as utility neutral.

If the design matrix X is orthogonal and all choice tasks are utility balanced, i.e., V;5; # V,s; for all
alternatives j # i such that p,;; = 1/|J|, then F becomes a diagonal matrix. This implies that the
variance-covariance matrix Q is also diagonal, which means that parameter estimates are uncor-
related and can be independently estimated. However, it is impossible in practice to satisfy both
orthogonality and utility balance at the same time unless all parameters are equal to zero (which is
typically the null hypothesis one wishes to reject). Hence, in practical applications it is not possible
to independently estimate parameters in a choice model.
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Street et al. (2001), Burgess and Street (2003), Street and Burgess (2004) and Street et al. (2005)
introduced so-called optimal (orthogonal) designs in cases where alternatives have generic attributes
(such as in unlabelled experiments). An optimal orthogonal design is a specific type of orthogonal
design that seeks to maximise the Gramian matrix (which is an algebraic characterisation of the
equivalent statistical Fisher information matrix, up to a scale) of the conditional logit model, thereby
combining efficiency and orthogonality. Street et al. (2005) showed that generating such designs by
hand is relatively easy using so-called generators that ensure minimum overlap in the design.

Generator. A sequence of numbers using design coding that can be applied to the profiles
of one alternative to generate profiles for another alternative.

The procedure described by Street et al. (2005) involves generating an orthogonal array (using design
coding) to describe the profiles of the first alternative and then sequentially applying generators to
create the profiles for the other alternatives. For example, consider an unlabelled experiment with
three alternatives, each with three attributes having three levels as described in Table 1.2. Suppose
that the generators 211 and 122 are applied to create the profiles for the second and third alternative.
Consider profile 011 for the first alternative, which means a laptop with an Intel Core i3, 512 GB hard
disk drive and a price of $1800. Then the profile for the second alternative becomes 011 + 211 = 222
using element-wise addition, which means a laptop with an Intel Core i7, a 1 TB hard disk drive
and a price of $2100. For the third alternative, the profile becomes 011 + 122 = 100 where modulo 3
is applied to cycle back to level 0, that is, (1 + 2) mod 3 = 0. Application of a generator essentially
re-assigns design codes to attribute levels, a process that is also referred to as relabelling. A generator
of 122 means a relabelling of 0 — 1,1 — 2, and 2 — 0 for the first attribute and a relabelling of
0 — 2,1 - 0,and 2 — 1 for the second and third attribute. Since generators 211, 122, and 000
(associated with the first alternative) have no overlap, the resulting design will have zero overlap
(and therefore optimal). Note that optimal orthogonal designs are also subject to the disadvantages
mentioned above for orthogonal designs.

Under the (very strict) assumption of utility balance and assuming that all attributes are coded
using orthogonal polynomial contrasts, it is possible to analytically compute the lowest possible
D-error and therefore express D-efficiency as a percentage, where 100 percent indicates an optimal
orthogonal design. These D-efficiency percentages are somewhat misleading since a 100% optimal
design is unlikely to be optimal in practice, since the underlying assumptions are typically violated.

1.5.3 Random designs

Although efficient and orthogonal design strategies are systematic approaches in determining a frac-
tional factorial design matrix X that contains a specific subset of choice tasks, an alternative strategy
is simply to use randomly generated choice tasks for each agent by selecting choice tasks from an
explicitly generated full factorial design (if the full factorial is sufficiently small), or by randomly
generating choice tasks on the fly for each agent (if the full factorial is large). This experimental
design strategy also allows for the application of constraints and can avoid strictly dominant alter-
natives. Random designs do not suffer from multicollinearity unless the analyst imposes constraints
that perfectly correlate attribute levels.

As mentioned earlier, heterogeneous designs generally contain more information than a homoge-
neous design. A random design can be considered an extreme version of a heterogeneous design.
While individual choice tasks in random designs may not capture a large amount of information,
variation in the data is where random designs excel. The fact that each randomly generated choice
task may capture different information allows random designs to decrease standard errors at a rate
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larger than VN. Therefore, for a large enough sample size N, the amount of information captured
with a random design can approach that of a fixed efficient design.

The main advantages of a random design strategy are that no experimental design skills are required
(unless attribute level constraints or dominance checks need to be imposed), and the analyst does
not need to formulate utility functions in advance since the data will be sufficiently rich to estimate
any model. The main disadvantage is that it is an inefficient data collection strategy for small sample
sizes and therefore should only be considered sample size is sufficiently large (typically at least 1,000
responding agents).

1.5.4 Agent- or segment-specific designs

Hypothetical bias is a well-known concern in choice experiments, e.g., due to the absence of con-
sequences in hypothetical choice tasks or the difficulty in imagining alternatives that may not yet
exist. We refer to Penn and Hu (2018) for a meta-analysis of hypothetical bias and to Haghani et al.
(2021a) for an extensive overview of empirical evidence of hypothetical bias in choice experiments.

Hypothetical bias. The deviation in estimated preferences due to choice data collected
in hypothetical settings instead of a more realistic setting.

To make choices more realistic and incentive compatible, one could simulate experiences (e.g., Fayyaz
etal,2021) or introduce consequences (MacDonald et al., 2016). Several other methods exist to reduce
hypothetical bias, including cheap talk, solemn oath, honesty priming, indirect questioning, time-
to-think, and certainty scales; see Haghani et al. (2021b) for an overview.

Another way to reduce hypothetical bias in choice experiments is to create familiar choice tasks
based on real experiences of agents instead of using a fixed design across the entire population
(e.g., Hensher, 2010). This can be done through a so-called pivot design in which attribute levels are
absolute or relative pivots around reference attribute levels reported previously by an agent (Rose
et al., 2008). Another way is to create a library of designs containing separate designs for different
agents; see, for example, Merkert et al. (2022). Both methods can be applied in conjunction with any
experimental design strategy (efficient, orthogonal, or random) and are briefly explained below.

Using route choice as a common application in transport, consider asking agents about a recent trip
they have made and wanting to tailor the choice tasks around their reported trips. An agent may
report a recent trip to work by car that took 25 minutes and where $5 toll was paid. Then in the
choice experiment, the same agent would be asked to imagine making the same trip to work again
and choose between two or more route alternatives where route travel times and toll costs vary
around the reported travel time and toll cost. A pivot design is a fixed matrix X consisting of pivot
levels. In case relative pivots are used, the matrix contains, for example, levels -25%, 0%, and +25%,
which means that for this specific agent the levels shown in the choice tasks would be 25, 30, and 35
minutes for travel time and $4, $5, and $6 for toll costs. Using relative pivot levels, attribute levels
automatically scale to make sense for short and long trips. However, relative pivots do not always
work; for example, if an agent reports to have paid $0 in tolls, then the levels shown would be zero
toll only. In such cases, one may want to revert to absolute levels, such as +$1, +$2, +$3. Pivoting is
generally not needed around qualitative attributes, but it is possible to pivot around attributes with
an ordinal measurement scale by showing levels close to the reference input. Implementing a pivot
design in a survey instrument typically requires programming rules and logic to deal with all kinds
of user input, which may be challenging in certain survey tools.

An alternative to using a fixed pivot design is to generate different designs X'9) for different groups
of situations g, g = 1, ..., G, and have them available in a library within the survey instrument. In
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our route choice experiment, we may, for example, create G = 24 different designs based on four
categories of trips (work, business, shopping, leisure), two modes of transport (car, public transport),
and three distance categories (short, medium, long). Using the same agent as described above, for
this agent we would look up and use the design with characteristics ‘work’, ‘car’, and ‘medium’ from
the library. The advantage of this approach is that all experimental designs can be generated and
checked in advance, although it may require generating many experimental designs.

1.6 Step VI: Conduct pre-testing and pilot-testing

Once a draft survey has been developed, it needs to be pre-tested and pilot tested. This can be done
qualitatively through focus groups or personal interviews and / or quantitatively through a pilot
study (Mariel et al., 2021).

Pre-testing. A small-scale preliminary qualitative study to evaluate the clarity, validity,
and reliability of the survey.

Pilot testing. A preliminary quantitative study to assess the feasibility of the survey
and to improve the survey design for the main survey:.

A pre-test aims to find out whether the information in the survey is sufficient and well understood
by the target audience (using familiar concepts and terminology), noting that agents have different
backgrounds and levels of education (Mariel et al.,, 2021). Pre-testing identifies and fixes problems
or errors in the survey content, format, or administration. Johnston et al. (2017) recommends a
minimum of four to six focus groups in survey pre-testing. Other ways to pre-test a survey is
through face-to-face interviews or cognitive testing via think-aloud protocols.

A pilot test typically involves approximately 10 per cent of the total sample size (that is, 7z N) to verify
that a choice model can be estimated before starting the main data collection. Pilot testing identifies
potential problems throughout the entire survey procedure. One can ask agents for feedback about
the survey, and the choice experiment in particular, at the end of the survey. This may include
questions about the difficulty of choice tasks and how much they enjoyed it to get a sense of the
complexity and engagement of choice tasks. A pilot study is also useful for obtaining parameter
priors to generate a more efficient design for the main data collection, as further explained in Section

1.7.

An efficient, orthogonal, or random design can be used for the pilot study. An orthogonal design
could be useful if (i) most attributes have only two or three levels, (ii) if there is no real concern about
strictly dominant alternatives (e.g., if the experiment is labelled with label-specific attributes, or if the
attribute levels do not have an obvious preference ordering), and (iii) if there do not exist unrealistic
attribute level combinations. In other cases, one could use an efficient design if sample size is small
or a random design if sample size is large, while in both cases applying possible constraints and
excluding choice tasks with strictly dominant alternatives. When using an efficient design in the
pilot study, non-informative (zero) priors could be used to indicate that no prior information about
the parameters is available.

As an example, Table 1.4 shows an optimal orthogonal design for our laptop choice example with
two alternatives. This design was created by running script 1.1 in Ngene, which adopts the design
generation technique proposed by Street et al. (2005). It can be seen in Table 1.4 that the generator
111 was used to create the profiles in the second alternative. Note that this syntax is provided merely
for illustration purposes; explanations of the various parts of this syntax are given in subsequent
chapters (although brief comments are included in the syntax).
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design
;alts = LaptopA, LaptopB

two generic alternatives

;rows = 9 design size of 9 choice tasks
;orth = ood generate optimal orthogonal design
;model: ? using design coding for attribute levels
U(laptopA, laptopB) = proc * PROCESSOR[9,1,2]

+ stor * STORAGE[O,1,2]

+ cost * PRICE[O,1,2]

? PROCESSOR: @(Core i3), 1(Core i5), 2(Core i7)

? STORAGE: 0(256 GB), 1(512 GB), 2(1 TB)

? PRICE: 0($1500), 1($1800), 2($2100)

$

[ES BRI IS

Script 1.1: Optimal orthogonal design

Laptop A Laptop B
Choice task Processor Storage Price Processor Storage Price
1 Core i5 256 GB  $1,500 Core i7 512GB  $1,800
2 Core i7 512 GB  $1,500 Core i3 1TB $1,800
3 Core i3 1TB $1,500 Core i5 256 GB  $1,800
4 Corei7 256 GB $1,800 Corei3 512GB $2,100
5 Core i3 512GB  $1,800 Core i5 1TB $2,100
6 Core i5 1TB $1,800 Core i7 256 GB  $2,100
7 Core i3 256 GB  $2,100 Core i5 512 GB  $1,500
8 Core i5 512GB  $2,100 Core i7 1TB $1,500
9 Core i7 1TB $2,100 Core i3 256 GB  $1,500

Table 1.4: Optimal orthogonal design

One can check that the attribute levels for Laptop A (and Laptop B) are orthogonal since each
attribute level combination appears the same number of times, for example combination (Core i5,
256 GB) appears once, (1 TB, $1500) appears once, (Core i3, $2100) appears once, etc. This orthogonal
design is optimal since there is no attribute level overlap, namely processor, amount of storage, and
price are always different across the two alternatives. Despite being theoretically optimally efficient
(under the assumptions of linear utility functions, orthogonality, orthogonal polynomial contrast
coding, and utility balance or zero priors), it has two problematic choice tasks: Laptop B has a strictly
dominant alternative in choice tasks 7 and 8 (indicated in red), where it is expected that Laptop B
will always be chosen. We need to make a distinction between a dominance in probability (which
can occur in labelled and unlabelled experiments) and dominance in attribute levels (which can only
occur in unlabelled experiments).

Dominant alternative. An alternative that has a very high likelihood of being chosen.

Also referred to as dominance in probability.

Strictly dominant alternative. An alternative that is better than (or equal to) any other
alternative in the choice set with respect to all attributes. Also referred to as dominance
in attribute levels.

33



design
;alts = (LaptopA, LaptopB) ? avoids strictly dominant alternatives
;rows = 9 ? design size of 9 choice tasks
;eff = (mnl,d) ? minimise D-error for the multinomial logit model
? uses default column-based swapping algorithm
? uses noninformative priors to indicate preference order
? uses estimation coding for attribute levels
U(laptopA, laptopB) = proc.dummy[+] * PROCESSOR[1,2,0]
+ stor[+] * STORAGE[5.545,6.238,6.931]
+ cost[-] * PRICEL1500,1800,2100]
? PROCESSOR: @(Core i3), 1(Core i5), 2(Core 1i7)
? STORAGE:  1n(256), 1n(512), 1n(1024) GB
? PRICE: $1500, $1800, $2100
$

;model:

Script 1.2: D-efficient design without strictly dominant alternatives

Although a strictly dominant alternative is also dominant, a dominant alternative is not necessarily
strictly dominant. Choice tasks with a dominant alternative generally capture little information,
but mainly choice tasks with strictly dominant alternatives are problematic, since they can bias
parameter estimates (Bliemer et al., 2017). Choice tasks with a strictly dominant alternative can
easily be identified by substituting attribute levels with their preference order according to Table
1.2, for example, Laptop A has attributes with preference orders (3,3,3) in choice task 7, while Laptop
B has a profile with preference orders (2,2,1), making it better in each attribute. In case there is no
clear preference order for attribute levels (e.g., colour of a car), then strictly dominant alternatives
are generally not a concern.

Script 1.2 was used to generate an attribute level balanced D-efficient design assuming noninfor-
mative (zero) priors (i.e., utility balance) for the laptop choice example using the default swapping
algorithm in Ngene where constraints have been applied to avoid strictly dominant alternatives.
Again, this syntax is for illustration purposes only and will be explained in subsequent chapters.

Table 1.5 shows the resulting efficient design. For the computation of the D-errors, the following
utility function was assumed:

(Core i5) Core i7
f(X) = ﬁl pr(())cr:slsor + ﬁZ ;()rgcrsslsgr + ﬁ?) ln(xstorage) + ﬂ4xprice, (1'9)

where In(-) indicates the natural logarithm, xffj;’;‘;fo)r and xlfg’i:;;}r are dummy-coded binary variables

using level ‘Core i3’ as the base level, Xstorage is the hard-disk storage in GB (i.e., 256, 512, 1024), x Xorice
is the price in dollars, and = (S, B2, B3, B4) are parameters to be estimated. In this example, we
have applied a transformation via the natural logarithm on the storage variable under the hypothesis
that there is diminishing benefit in additional storage space (i.e., at some point enough is enough).

The D-error of the design in Table 1.5 for the above model specification is 0.0272, which is slightly
better than the D-error of 0.0287 that would result from the design in Table 1.4 (which imposes
orthogonality constraints but no dominance constraints) despite some overlap in the storage and
price attribute. The efficiency of the design can be further improved by using the modified Fedorov
algorithm, which relaxes the attribute level balance constraint. This requires adding the following
command to Script 1.2:

;alg = mfedorov ? uses row-based modified Fedorov algorithm

Table 1.6 shows this design, which is clearly not attribute level balanced. It has a low D-error of
0.0255 and does not have strictly dominant alternatives and does not have overlap in the attribute
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Laptop A Laptop B

Choice task  Processor Storage Price Processor Storage Price
1 Core i7 1TB $2,100 Core i3 256 GB  $1,800
2 Core i3 256 GB  $1,500 Core i7 1TB $2,100
3 Core i7 512GB  $1,500 Core i5 1TB $2,100
4 Core 15 1TB $1,500 Core i7 256 GB  $2,100
5 Core i3 1TB $1,800 Core i5 512GB  $1,800
6 Core i3 512GB  $2,100 Core i7 256 GB  $1,500
7 Core i7 512GB  $1,800 Core i5 512 GB $1,500
8 Core i5 256 GB  $2,100 Core i3 1TB $1,500
9 Core i5 256 GB  $1,800 Core i3 512GB  $1,800

Table 1.5: Attribute level balanced D-efficient design based on noninformative local priors

Laptop A Laptop B
Choice task Processor Storage Price Processor Storage Price
1 Core i5 256 GB  $2,100 Core i3 1TB $1,500
2 Core i5 1TB $1,500 Core i7 256 GB  $2,100
3 Core i5 1TB $2,100 Core i7 256 GB  $1,500
4 Core i5 256 GB  $1,500 Core i3 1TB $2,100
5 Core i3 256 GB  $1,500 Core i7 1TB $1,800
6 Core i3 256 GB  $1,500 Core i5 1TB $2,100
7 Core i7 256 GB  $1,500 Core i3 512GB  $2,100
8 Core i7 256 GB  $2,100 Core i3 1TB $1,500
9 Core i5 256 GB  $1,500 Core i7 1TB $2,100

Table 1.6: D-efficient design based on noninformative local priors using modified Fedorov algorithm

levels. Dummy (or effects) coded attributes will generally show a high degree of attribute-level
balance across the two alternatives, since a low representation of a certain level would not capture
much information for the corresponding parameter and, therefore, lead to a high D-error. However,
for other attributes, it is typically more efficient to show the most extreme levels (at least when
assuming zero priors), as this increases the trade-offs made in each choice task and hence increasing
Fisher information. As a result, the medium storage level of 512 GB and the middle price level of
$1800 only appear once within the nine choice tasks. If the levels of hard-disk storage were dummy
coded, then the middle level of 512 GB would appear more frequently.

After having generated an experimental design (or a library of multiple segment-specific designs),
one needs to choose a survey instrument. For the pilot study, one can simply use a pen and paper
questionnaire or an Excel spreadsheet (e.g., Black et al., 2005), but in most cases, one would implement
the choice experiment in an online (for web-based surveys) or offline (for CAPI surveys) software tool
that will also be used in the main study. Tools that support choice experiments include SurveyEngine,
Confirmit, Nebu, and Qualtrics (with a choice-based conjoint add-on module). Most free online
survey tools do not support choice experiments, but for simple choice experiments, one may use
tricks such as creating multiple-choice questions with images that are screenshots of profiles or
whole choice tasks. A recommended tool for conducting choice experiments is SurveyEngine, which
is specifically designed for this purpose and has the additional advantage that it can easily use
experimental designs generated by Ngene.
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As mentioned in Step I (see Section 1.1, for labelled experiments, it is important to randomise (across
agents, not within an agent) the arrangement of labelled alternatives shown in choice tasks to be
able to account for possible presentation order effects of alternatives (e.g., left-to-right bias). In
model estimation, one would include a generic dummy coded variable in the utility functions of all
alternatives that indicates the order in which the alternative appeared in the choice task (essentially
making presentation order an ‘attribute’ of each alternative).

To account for presentation order effects of attributes, one may also want to randomise (again
between agents, not within an agent) the order in which attributes are shown to respondents, as
their relative position (e.g., top or bottom) may have a significant impact upon the behavioural
responses of agents completed choice tasks, also referred to as. For example, Kjeer et al. (2006) varied
the location of the price attribute, presenting it as the first attribute or the last attribute shown in
the task. They found that the order of the price attribute led to statistically significant differences
in price sensitiveness; however, they concluded that attribute presentation order did not result in
different decision rules being used by the sampled respondents. In an earlier study, Scott and Vick
(1999) reversed the order in which attributes were shown to responding agents and found statistically
significant evidence of an attribute ordering effect on model outcomes. On the other hand, Farrar and
Ryan (1999) found no evidence of this when they swapped the first two attributes with the last two
attributes. Likewise, Boyle and Ozdemir (2009) suggest that it is not a forgone conclusion that the
ordering of attributes will affect the choices and statistical results; it is likely to be a study-specific
issue. More recently, Logar et al. (2020) found that attribute order had no significant impact on WTP
estimates in standard models, but did significantly impact attribute non-attendance (e.g., people
ignoring certain attributes when making their choices). Interestingly, Weller et al. (2014), who did
not explore attribute order effects, found that other design dimensions had no impact on attribute
non-attendance.

After the pilot study, the analyst would use the collected choice data to estimate a conditional logit
model and verify that the model parameters can be estimated resulting in parameter estimates ﬁk,
k = 1,...,K, with corresponding standard errors ¢ that indicate the precision (reliability) of the
estimates. In the pilot study, it is likely that some or all parameters are not statistically significant
given the relatively small sample size. For parameters that are statistically significant, one can check
whether they have the expected signs (e.g., price or cost coefficients are expected to be negative).
If some parameters have an unexpected sign when using an efficient design, then one may want
to check for strong correlations between certain attributes in profiles. For example, if in our laptop
choice experiment the price attribute is always high (low) when storage space is large (small), then
the parameter for price may become positive if agents generally prefer to have a large hard-disk.
This can be remedied by including profiles with a low price and large storage space or high price
and small storage space (while at the same time avoiding that this alternative becomes dominant
via trade-offs on other attributes) or using an orthogonal design (which avoids such correlations by
definition but may suffer from strictly dominant alternatives).

Since parameter estimates themselves are difficult to assess, one often looks at marginal rates of
substitution (MRS) between attributes, of which WTP is a special case. The MRS represents the
amount of attribute / (i.e., the cost attribute in the case of WTP) that one has to give up for the
gain of one additional unit of attribute k such that the utility remains the same. For example, in our
laptop choice experiment with utility function (1.9) the WTP to have a Core i7 processor instead
of a Core i3 processor equals —f,/f; dollars, and the WTP for an increase in hard-disk storage is

— (B3 /Xstorage) / B4 dollars per GB, based on an initial storage level Xstorage-
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Laptop A Laptop B

Choice task  Processor Storage Price Processor Storage Price
1 Core i5 1TB $1,500 Core i7 256 GB  $1,500
2 Core i7 256 GB  $1,800 Core i3 1TB $2,100
3 Core i5 1TB $1,800 Core i3 256 GB  $1,500
4 Core 15 256 GB  $1,800 Core i3 1TB $1,500
5 Core i5 256 GB  $1,800 Core i7 1TB $2,100
6 Core i7 1TB $2,100 Core i3 256 GB  $1,800
7 Core i3 1 TB $1,800 Core i5 256 GB  $2,100
8 Core i7 256 GB  $1,500 Core i3 1TB $1,800
9 Corei5 256 GB $1,500 Core i7 1TB  $2,100

Table 1.7: D-efficient design based on informative local priors

1.7 Step VII: Conduct main study

The main study can use the experimental design for the choice experiment as used in the pilot
study (possibly after making some minor changes). However, one could improve the efficiency of
data collection by generating a new experimental design using information from the pilot study.
In particular, the parameter values ﬁk estimated using data from the pilot study can replace the
noninformative zero priors used previously. Using these non-zero parameter values as priors means
that we can no longer assume utility balance (i.e., equal choice probabilities) but rather use choice
probabilities that are expected to be closer to the truth. This results in a more accurate measure of
Fisher information, thereby allowing an improved experimental design.

Suppose that the parameter estimates obtained through a pilot study for our laptop choice experiment
are given by ﬁ1 = 0.35 and ﬂg = 0.5 (for the dummy coded processor attribute), ﬁg = 0.6 (for the
logarithmic storage attribute), and /34 (for the price attribute). Using these values as informative
local priors (instead of zeros) we can generate a new D-efficient design by updating the specification
of the utility function in Script 1.2:

U(laptopA) = proc.dummy[0.35]0.5] * PROCESSOR[1,2,0]
stor[0.6] * STORAGE[5.545,6.238,6.931]
cost[-0.004] * PRICE[1500,1800,2100]

+ +

This generates the experimental design shown in Table 1.7, which has a D-error of 0.0413. It is
important to emphasise that this D-error is not comparable to D-errors of designs that were generated
under different prior assumptions such as the designs generated in the previous section using zero
priors. If the informative local priors equal the true parameter values, then the design in Table 1.7
captures maximum information. We observe that the price levels for the two alternatives in Table
1.7 are more balanced than in Table 1.6. This is a direct effect of using informative local priors. Since
a prior value —0.004 for the price parameter indicates that price is relatively important in choosing
a laptop (see discussion below), making comparisons only between extreme price points $1,500 and
$2,100 would often result in choice tasks where price dominates. In such cases, little to no trade-offs
are made with respect to processor and storage, and hence little information is captured with respect
to these two attributes. Therefore, using informative priors when generating a D-efficient design
assists in ensuring that agents make trade-offs across all attributes, especially when one or more
dominant attributes exist.
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The relative importance of each attribute in the experimental design can be determined by looking at
the relative impact each attribute has on utility (Orme, 2019). Considering again the laptop choice
example and the priors given, the processor attribute contributes between 0 (Core i3) and 0.5 (Core
i7) to utility, the storage attribute contributes between 0.6 In(256) = 3.33 and 0.6 In(1024) = 4.16
to utility, and the price attribute contributes between —0.004 - 1500 = —6 and —0.004 - 2100 = —8.4
to utility. Looking at the range in utility contribution, in absolute terms, the processor makes a
maximum difference of 0.5, storage makes a maximum difference of 0.83, and the price makes a
maximum difference of 2.4 in utility. Expressing this in percentages, the relative importance of
processor, storage, and price is 13 percent, 22 percent, and 64 percent, respectively. These percentages
are also referred to as partworth utilities. In other words, price is the most important attribute in the
choice experiment. We point out that the assessment of attribute importance cannot be based on
the size of the corresponding parameter values, since the measurement scales and units of attributes
are different.

While a D-efficient design based on informative local priors would be able to capture maximum
information under ideal circumstances where prior assumptions are correct, such priors are in prac-
tice merely a best guess and will often be considerably different from the final parameter estimates,
resulting in some loss of information. The more accurate the informative local priors, the less infor-
mation is lost in the data collection. If the informative local priors turn out to be entirely different
from the actual parameter values, then data collection can, in fact, become very inefficient (Walker
et al., 2018). To make a D-efficient design more robust against prior misspecification, informative
Bayesian priors have been proposed (Sandor and Wedel, 2001). A Bayesian prior is different from
a local prior in that it does not consider a single value for the prior but rather considers a range
of values via a predefined probability distribution. For example, if one believes that the parameter
value for the price attribute in our laptop example lies somewhere between 0 and —0.008, then one
could consider a Bayesian prior with a uniform distribution between the two values. In other words,
Bayesian priors take into account the inherent unreliability about prior parameter values. The degree
of unreliability of each prior can be obtained via standard errors of the parameter estimates in a pilot
study. Assuming parameter estimate Bk and its corresponding standard error ¢, that indicates the
degree of unreliability of the parameter estimate, a natural choice for a Bayesian prior is to assume
a normal distribution with mean ,Bk and standard deviation c.

The Bayesian D-error of a design indicates the expected (mean) D-error over the given prior distri-
butions and can be computed via Monte Carlo simulation by taking quasi-random draws from the
prior distributions (Bliemer et al., 2008). The number of draws required to obtain stable Bayesian
D-error values increases exponentially with the number of Bayesian priors (e.g., 2X or 3X for distri-
butions with small standard deviations, 4X or more for distributions with large standard deviations).
It is therefore recommended to keep the number of Bayesian priors limited (typically not more
than eight to ten) and to use local priors for the remaining parameters (if any). In choosing which
parameters to allocate a Bayesian prior, it is advised to give priority to attributes with a high relative
importance, as they will have the largest influence on utility and therefore are most sensitive to
prior misspecification.

Continuing our laptop choice example, assume that the previously mentioned parameter estimates
have standard errors ¢; = 0.2 and ¢; = 0.3 (associated with the dummy coded processor parame-
ters), ¢3 = 0.4 (associated with the storage parameter), and ¢4 = 0.0025 (associated with the price
parameter). A Bayesian D-efficient design (not shown here) with a mean D-error of 0.0497 can be
generated by replacing the utility specification in Script 1.2 with the following:

U(laptopA) = proc.dummy[(n,0.35,0.2)|(n,0.5,0.3)] * PROCESSOR[1,2,0]
stor[(n,0.6,0.4)] * STORAGE[5.545,6.238,6.931]
cost[(n,-0.004,0.0025)] * PRICE[1500,1800,2100]

+ +
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The Bayesian D-error will always be larger than the D-error of a design that is optimised using
corresponding local priors, but the associated Bayesian D-efficient design will result in less loss of
information when the true parameter values deviate from the informative local priors. Therefore, it
is recommended to use a Bayesian D-efficient design as a more robust design strategy, despite the
increase in mean D-error.

An often asked question is “What sample size do I need?" The answer is that this is case-specific,
where in some studies only 50 agents are needed to get statistically significant and reliable parameter
estimates, whilst in other studies possibly thousands of respondents are needed. If alternatives
include attributes that are all highly important (such as the cost attribute in most studies), then
all parameters can be estimated with a smaller sample size. In contrast, if most attributes are only
marginally relevant in making a choice, then a large sample size will be required to obtain statistically
significant parameter estimates. Some rules of thumb have been discussed in the literature; see (Rose
and Bliemer, 2013) for an overview, but one can make some specific minimum required sample size
calculations if informative parameter priors are available. Using parameter estimates Bk, k=1,...,K
from a pilot study as informative local priors, we can compute the Fisher information matrix and the
related variance-covariance matrix Q. The minimum sample size N’ for parameter k, such that it
can be estimated at a given level of statistically significance, can be computed as (Rose and Bliemer,
2013; De Bekker-Grob et al., 2015):

2
* La/2
N; = (i) Qiks (1.10)

where Qg is the variance of parameter k and t,/, indicates the (two-sided) t-value at the desired
level of significance « (e.g., 1.96 if & = 0.05). The values N are also referred to as S-estimates, and the
minimum sample size N* required to estimate all K parameters at a statistically significant level, i.e.,
N* = maxy {N]’:} is also known as S-error (Rose and Bliemer, 2013). Given that the above minimum
sample size computations rely heavily on prior parameter values, they should only be used when
using informative priors that are sufficiently reliable and should only be used as ballpark figures (e.g.,
whether one needs tens, hundreds, or thousands of respondents). Note that if a design is blocked,
these minimum sample size estimates need to be multiplied by the number of blocks.

1.8 Further remarks

This chapter aimed to outline the steps to follow in generating a choice survey. Although each study
will differ in terms of research objectives, empirical application area, and sampling requirements,
following the seven steps outlined here represents current best practice for most choice studies. In
any case, six of the seven steps are required to collect any choice data, with only the possibility
of not conducting pre-testing and pilot testing being feasible. However, this does not mean that
one should not undertake some form of pilot study, and indeed it is highly recommended to do so.
Unfortunately, some applied economic fields are better at this than others.

Of the seven steps, most are fairly straightforward and easy to complete. Of course, given the range
of possible applications that choice experiments can be applied to, the ease of generating a stated
choice experiment should never be taken for granted. Additionally, individuals planning to conduct
a choice experiment should possess a solid understanding of discrete choice methods, particularly
regarding the correct specification of utility functions to ensure all parameters can be accurately
identified. It is often easy to make what appear to be small innocuous mistakes that can have
significant ramifications that only become apparent after the data have been collected. For example,
in a model with a status quo alternative containing a qualitative attribute (dummy or effects-coded),
it is important that the fixed attribute level of the status quo alternative also appears in one or more
other alternatives to avoid identification issues in model estimation (Cooper et al,, 2012). Any person

39



attempting to design stated choice experiments is encouraged to first properly immerse themselves
within the greater literature to fully understand the subtle nuances of discrete choice modelling.

Based on the data collected from a choice experiment, the analyst will typically estimate a large
number of discrete choice models, starting with the multinomial logit model where covariates such
as socio-demographics can be added into the utility functions. When choice set size varies in the
dataset one may want to test for heteroscedasticity by allowing scale differences (e.g., via a nested
logit model or error component mixed logit model) and account for preference heterogeneity (e.g.,
via a random parameter mixed logit model or a latent class model). Since stated choice data typically
captures multiple choice responses from a single agent, it is important to also account for the panel
nature of the data in model estimation. Various specialised software tools are available to estimate
discrete choice models. A widely used tool for model estimation is Nlogit, which is specifically
designed to estimate a wide range of discrete choice models using syntax that is very similar to that
of Ngene. Effective and adaptable open-source tools for estimating discrete choice models include
Apollo, which uses R (Hess and Palma, 2019), and Biogeme, which uses Python (Bierlaire, 2020).
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Ngene user interface

This chapter provides an overview of the Ngene graphical user interface. It discusses the main
screen and shows how to create a new project, how to open existing projects, and how to open
demonstration projects. In addition, it explains the script editor, how to run scripts, and how to
inspect results.

2.1 Main screen and project screen

Figure 2.1 shows the Ngene main screen. Clicking on the Ngene logo on the top left always returns
to this main screen. There are buttons on the top right for Notifications, Support, and Account.

] (SN ON )

RECENT DESIGNS
Orthogonal
ene .
Time: 2sec

Completed Open Project =

What would you like to do? My Design
v, test

Time: 3sec
Completed

- . -~ Open Project -
’ ¢ ’
@ Bayesian efficient - 2
v My_tutorial

Time: 4sec

. _ e Completed .
Create New Project Open Demo Project Open Project Library Open Project =

Designs: 14 Designs: 14
Last Updated: 15.12.2024 @2:25pm Last Updated: 15.12.2024 @2:24pm

Open Project = Open Project -
Figure 2.1: Main screen
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Figure 2.2: New project screen

A list of recently generated designs is presented on the right of the main screen is a, while on the
bottom a list of recently opened projects appears. There are three main actions a user can take,
namely Create New Project, Open Demo Project, and Open Project Library.

To create a new project, click the Create New Project button on the main screen. A pop-up window
will ask you to name the project — for example, ‘My project’ — and then ask you whether to start
with a Blank script or Import design matrix. Design import is discussed in Section 2.5. In most cases,
you will want to start with a blank script. Figure 2.2 shows what the project screen looks like when
starting with a blank script. By clicking on the ellipsis menu after the project name, indicated by
three horizontal dots (- - -), it is possible to rename the project, close it, or delete it.

All experimental designs generated in Ngene are stored in experiment folders. Folders are useful for
structuring a project. One could create, for example, separate folders for different phases in the study
(e.g., pilot and main) or for different population segments. New folders can be added by clicking on
the New Experiment Folder button. Folders can be opened and closed by clicking on the folder name.
By clicking on its ellipsis menu, the folder can be renamed or deleted. Each folder can contain one
or more designs. A Design can contain a script, a search graph, and results, which can be accessed
via tabs at the top. To add a design, click on the New Design button. By clicking on its ellipsis menu,
one can duplicate, rename, or delete it, or move the design to another folder.

Demonstration projects can be accessed by clicking on the Open Demo Project button on the main
screen and then creating a copy of one of the available demo projects, see for example Figure 2.3.
Existing projects can be opened by clicking on the Open Project Library button on the main screen.
Recent projects can also be opened directly from the main screen.

2.2 Writing and editing scripts

Scripts to generate an experimental design can be written and edited in the Script tab in the project
screen. Figure 2.3 shows an example of a script. The syntax for writing scripts is explained in Chapter
3 and further. The script editor uses syntax highlighting to indicate properties, reserved words, and
comments. It also automatically adds closing brackets and parentheses.
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Figure 2.3: Demo project

Scripts are automatically saved, but the script editor has the Undo and Redo buttons above the script
editor. There is also Copy and Paste functionality that can be accessed via buttons or by using typical
keyboard shortcuts; see also Table 2.1. Text can be found (and replaced) using the keyboard shortcut
(Ctrl)+[ F ] on a Windows computer or (Cmd]+[ F | on a Mac. The script editor also supports multiple
cursors to easily edit various parts of the script simultaneously. One can add another cursor by
holding the button and clicking on another location in the script with the mouse, which
is useful for adding or deleting text in multiple places. Similarly, to select multiple parts of the
script, hold the button and select additional text with the mouse. Changing the name of
an attribute in the entire script can be done with find and replace but also by selecting the attribute
name (e.g., by double-clicking on the name) and then pressing [Ctrl/Cmd]+ +[ L] to select all
occurrences of this attribute name across the script. When multiple occurrences are selected, one
can type and delete across multiple locations at the same time. A list of all keyboard shortcuts is
shown in Table 2.1.

The syntax reference guide can be accessed by clicking the Syntax Help button. This Syntax Help
pops up in a separate window and is useful for quickly looking up properties and syntax examples,
see for example Figure 2.4.

2.3 Running scripts
After finishing writing a script, it can be run by clicking the Run search button on the upper right

of the script editor, see, for example, Figure 2.3. The Run search button changes into a Stop search
button, see Figure 2.5, and the Log screen underneath the script editor provides messages while the
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Keyboard shortcut Explanation

Basic editing

Select all.

[Ctri/Cmd]+[ C ] Copy.

Cut.

(Ctrl/Cmd]+[ V] Paste.

(Ctrl/Cmd]+[ Z ] Undo.

(Ctrl/Cmd]+[ Y ] Redo.

Find (and Replace).
Multi-cursor support

(Ctrl/Cmd]+[ D | Select and add next occurrence.
Undo latest cursor operation.
(Ctrl/Cmd]+(Shift]+[ L | Select all occurrences.

Select multiple columns.

Ctrl/Cm

!

Table 2.1: Keyboard shortcuts in the script editor

Property that defines the alternatives in the choice set.
Format
alts{model) = (alternative, ...), ...

Explanation

alternative (string)is the user-specified name of a choice option in a choice set. Alternatives that are of the same type with the same preference structure, also referred to as
unlabelled or generic alternatives, should be grouped using parentheses around the alternative names.

model (string) is the user-specified model name in the model property. If only a single model is specified, then the model name can be omitted. If multiple models are specified, property
alts should be defined for each model. Different models can have a different number of alternatives.

Comments
#  This is a mandatory property to define.
Examples

alts = (laptopaA, laptopB), neither

alts = car, train, bus

alts = (carl, car2), (trainl, train2)

alts = chemotherapy, immunotherapy, active_surveillance

alts = (policyl, policy2, statusquo)

alts{unforced) = Apple, Samsung, Huawei, optout ; alts(forced)

= Apple, Samsung, Huawei
alts{modell) = (hotell, hotel2) ; alts(model2) = (hotell, hotel2)

Figure 2.4: Syntax help
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Figure 2.5: Running a script

script is running. In addition, at the bottom of the screen the Current Evaluation counter indicates
how many experimental designs have been evaluated thus far.'

Some scripts will finish running within seconds, while other scripts may run for several minutes or
longer. If the script does not automatically finish, it can be stopped manually once Ngene no longer
generates designs that are substantially better (i.e., more efficient). This assessment can be made by
looking at the graph in the Search tab, see Figure 2.6. In this example, a good design was generated
after approximately 150 design evaluations, and designs found afterwards are only marginally better.

In almost all cases, scripts will start running immediately after clicking the Run search button. But
occasionally, it may happen that the server is busy running many other scripts and that a script is
put in the queue. In such cases, scripts will generally start running in one minute, but in rare cases it
may take longer. We encourage all users not to let scripts run unnecessarily long so that other users
can also run their scripts quickly. The search will typically automatically end if no better design is
found after 5,000 consecutive design evaluations. All running scripts will time out upon reaching
10 hours of execution.

The status of each design is indicated with an icon. These icons are explained in Table 2.2. If there
is an error in the script, more details about the error are provided in the log screen. The log screen
may also display warnings. Warnings are not errors and will not prevent the script from running,
but they often provide useful information and are worth taking note of.

After running a script, it becomes locked and can no longer be edited to ensure that no scripts or
results are lost by mistake. To make changes to the script and run it again, simply click the Duplicate
& Edit button, which creates a new design and copies the script. If the previous script / design is no
longer needed, it can be deleted via its ellipsis menu.

IThere is also a counter for Invalid Designs, which indicates the number of designs that were evaluated but rejected
for various reasons (e.g., due to multi-collinearity or poor efficiency).
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Figure 2.6: Search graph

Icon Explanation

Actively searching for designs.

Finished design search.

Favourite design (toggle via ellipsis menu).
Error in script, no design generated.

Imported design (no script).

ofc ) Je

Table 2.2: Design status
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MATRIX INSPECT

Design

My project

+ NMew Design Design | Choice tasks @D choice tasks
Choice situation hotell.price hotell.stars hotell.dist hotel2.price hotel2.stars hotel2.dist Comelations
Model
2 160 3 1500 120 1 1500
MNL
3 160 3 500 160 5 2500
o Design properties
4 120 3] 1500 160 3 500
Covariance matrix
& 80 ] 2500 80 3 500
Fisher matrix
6 80 1 2500 120 5 1500 Probabilities
7 160 1 500 160 3 1500 viiliies
8 120 3] 500 80 1 2500
9 80 1 1500 80 5 2500

Model | MNL | Design properties

D error 0007245
A error 1513859
S estimate 62.474017
Prior b1 b2(d0) b2(d1) b3
Fixed prior value -0.08 0.4 05 -0.0002
Sp estimates 3.133558 47 650031 62474017 61848806
Sp t-ratios 1.107228 0.283939 0.247974 0.249224

Figure 2.7: Design results

2.4 Inspecting results

The experimental designs generated by Ngene can be viewed in the Results tab of the project screen.
Figure 2.7 shows a table with Choice tasks (choice situations) in the generated experimental design,
as well as Design properties. The results are presented in two main sections. In the Design section
one can also find Correlations based on Pearson product-moment correlation coefficients. In the
Model section one can find further model-specific design properties, such as the Covariance matrix
(assuming a single agent receives all choice tasks) and choice Probabilities in each choice task based
on any specified priors. One can display or hide results by toggling various result items on or off.
Although most scripts will only produce a single design and results for a single model, some scripts
will generate multiple designs for multiple model types and the result options would automatically
expand, see Figure 2.8. The available results may also depend on whether local or Bayesian priors
were used when generating an efficient design.

Any information that is toggled on will be added to the matrix view and may require scrolling
down to see them. To avoid the need for extensive scrolling to find results in a long list, one can
immediately view a specific result by clicking on the finder button (~') at the end of each result
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Model (model1)

MML RP RF Panel
o Design properties

Covariance matrix

Fisher matrix

Frobabilities

Utilities

Cuovariance matrix (bayesian average)
Fisher matrix (bayesian average)
Efficiency measures by bayesian draws

Model (model2)

ML RP RP Panel
o Design properties

Caovariance matrix
Fisher matrix
Probabilities
Sequential probabilities
Utilities
Cuovariance matrix (bayesian average)
Fizher matrix (bayesian average)
Sample
Model (average)
o Efiiciency overview

Fisher (fish)

Design (d1}

o Choice tasks MML RP RF Panel
Correlations o Weights

Design (d2) Design properties
o Choice tasks Covariance matrix
Correlations Fisher matrix
(a) Multiple designs (b) Multiple models

Figure 2.8: More extensive design results depending on script
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MATRIX INSPECT

HOTEL 1 | HOTEL 2 :

Price per room per night Price per room per night

$ 120 $ 80
Number of stars Number of stars
5 star 1 star
Distance to city centre Distance to city centre
500 meters 2500 meters

Ty
PREY K 2/9 E\ADD EMPTY ROW + /]

Figure 2.9: Inspecting choice tasks

item on the right-hand side. This finder button lights up when hovering the mouse over it, but only
when the item is toggled on. To quickly scroll back to the top of the list, press the scroll up button
(®) when it appears on the bottom right of the screen.

Most results are self-explanatory, but sample size estimates need more explanation. As shown in
Equation (1.10), an S, estimate refers to the estimated minimum number of respondents required
to be able to estimate the parameter at a statistically significant level, based on a specified local
informative prior and assuming a two-sided significance level of 0.05 (¢-ratio of 1.96). An Sy, estimate
is its Bayesian counterpart that refers to the average minimum number of respondents across draws
from a randomly distributed prior distribution. The overall S-estimate (also referred to as S-error)
refers to the corresponding maximum S;, or S, estimate across all parameters. For more information
and caveats on the interpretation of sample size estimates, refer to Section 1.7.

To inspect and assess each individual choice task, it is easiest to do this in a choice task format rather
than looking at rows in the design matrix. For this purpose, you can switch from the Matrix view to
the Inspect view by clicking the respective tab. The Inspect view visualises each row in the design
matrix as a choice task in a survey as shown in Figure 2.9. This screen also allows us to change
the names of the alternatives and attributes and to convert the numbers in the design matrix into
text that describes the meaning of each attribute level. Simply select any cell in the choice task and
click on Format Selected Cell to open the pop-up window Formatting Options, see Figure 2.10. The
formatting of the choice tasks is retained when clicking the Duplicate & Edit button in the script
editor, but if attribute levels are modified in the script, then the formatting may also need updating.

It is important to point out that choice task formatting in Ngene is only meant for quick and easy
inspection and evaluation by the analyst, it is not meant for data collection purposes. When transfer-
ring the experimental design to an online survey platform (such as SurveyEngine or Qualtrics), the
final formatting suitable for respondents and data collection is applied in that platform, including
replacing any attribute levels with images.

For choice experiments with labelled alternatives there may be different attributes per alternative;
see, for example, Figure 2.11. Alternative-specific attributes have different variable names across
alternatives in the script and would therefore be shown on separate rows when inspecting the choice
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MATRIX INSPECT

s FORMATTING OPTIONS X
HOTEL 1 i . Attribute Description
price Pri igh
Price per room per night | rice perroom per nig d
$120 Level Value Description
Humber of stars 1 80 $ 80

3 star

Distance to city centre 2 120 $ 120

2500 meters

*Please note, values can only be edited prior to running search

Figure 2.10: Formatting options for choice tasks

tasks. To change the location of an attribute within an alternative, simply drag the corresponding
cell up or down within a column”. Columns can be dragged to the left and right to change order. In
addition, any empty rows in the choice task can be removed by clicking on a cell in the empty row
and then clicking the Remove Empty Row button. Similarly, an empty row can be added by clicking
the Add Empty Row button.

2.5 Exporting and importing designs

Results can be exported to Excel by clicking the Export to Excel button near the top of the Results
screen; see Figure 2.7. This exports results — but only the items that are toggled on — to an Excel
spreadsheet (.XLSX) and saves the design and design properties in different worksheets tabs, see for
example Figure 2.13. You can also click on the Export to Design button to export the results to an
Ngene design file (NGD), which can be opened in the desktop version of Ngene.

Any design that was exported from Ngene can also be imported again by selecting Import design
matrix when creating a new project or after adding a new design to a folder, see Section 2.1. This is,
for example, useful when sharing designs across Ngene users or when wanting to move a generated
design from one project to another. Figure 2.12 shows the import design screen where files can be
dropped and selected from your device. This screen also allows the import of Ngene design (NGD)
files that were created in the desktop version of Ngene.

A design that has been created with other software or that has been created manually can also be
imported. This may, for example, be useful when using external candidate sets (see Section 6.9), when
evaluating the efficiency of a design provided by someone else (see Section 5.8). The spreadsheet or
CSV file must be in a specific format as outlined in the Example file that can be downloaded from the
Import matrix screen; see Figure 2.12. One of the requirements is that it must contain a header row
where the first cell contains the text ‘Choice situation’. To be able to use this design in a script, it is
important to put the attribute columns in the same order as they will appear in the utility functions

21t is possible to drag a cell above the alternative name, which is useful when the cell reflects to a scenario variable.
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MATRIX INSPECT

In-vehicle travel time In-vehicle travel time In-vehicle travel time
20 min 35 min 15 min
Waiting time Waiting time
10 min 1 min
Transfer Transfer
Yes No
Seating available Seating available
No Yes
Toll cost
$2
Fuel cost Fare Fare
$1 $2 $4

——
NEXT > | ADD EMPTY ROW + |
s - \ p

Figure 2.11: Choice task with alternative-specific attributes

n 206

IMPORT DESIGN

MATRIX
S |
1 1
1 1
1 1
1 1
: Drop .XLS, .XLSX, CSV or .NGD File Here :
1 or if you prefer 1
! !
| :
1 1
1 1
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e N ™
\\CANCEL X/,I I\E)(AMPLE ‘i,/I

Figure 2.12: Import design
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(a) Design matrix

Attribute

hotell.price
hotell.stars
hotel1.dist
hotel2.price
hotel2.stars
hotel2.dist

hotel1.price
1

-0.166667
-0.666667
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0
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D error
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Prior
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1
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-0.5
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1.513859
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b1l
-0.08
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Design | Correlations
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(b) Correlations
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(c) Model-specific design properties

Figure 2.13: Exported design in Excel
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in the script (Ngene does not automatically match variable names in the script with header names

in the file).
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The basics of writing scripts

This chapter describes the basics of writing Ngene syntax to generate experimental designs for choice
experiments. It shows how to generate full factorial experimental designs and random fractional
factorial designs for unlabelled and labelled experiments. Further, it explains how to modify the
script to avoid non-sensible choice tasks, namely choice tasks with identical profiles, repeated choice
tasks, and choice tasks with a dominant alternative.

3.1 Introduction to Ngene scripts and syntax

In this section, we introduce the structure of Ngene scripts and how syntax is written. First, we
introduce the terminology used throughout this manual.

Script. A text in a specific structured format, referred to as syntax, that contains instruc-
tions for the creation of an experimental design for a choice experiment.

Instruction. Setting a property of an experimental design using syntax.

Property. A design characteristic that can be represented by property values and possibly
some parameters.

All scripts start with the command design and end with the dollar symbol ($). Instructions are to
be written between this command and the end symbol, where each instruction is separated by a
semicolon (; ). The order in which these instructions appear is irrelevant. There are three properties
that must be set in each script, namely

« alts to define the alternatives in each choice task, see Section 3.2
+ rows to specify the design size, see Section 3.3
« model to specify the utility functions of all alternatives, see Section 3.7

In addition, the experimental design strategy/type must be specified by adding one of the following
properties to the script (see Section 3.4): fact, rand, orth, or eff.
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design ? Laptop choice example
;alts = (laptopA, laptopB)

;rows = 20

;block = 4

;rand

;model: ? using design coding

U(laptopA, laptopB) = proc * PROCESSOR[Q,1,2,3]
+ stor * STORAGE[O,1,2,3]
+ cost * PRICE[O,1,2,3]
? PROCESSOR: 0(Core i3), 1(Core i5), 2(Core i7), 3(Core 1i9)

? STORAGE: 0(256 GB), 1(512 GB), 2(1 TB), 3(2TB)
? PRICE: 0($1200), 1($1500), 2($1800), 3($2100)
$

Script 3.1: Example script

Depending on the property, a property value can be a string (defined by a sequence of characters)
or a number. For example, alts = laptopA, laptopB assigns two user-defined strings to property
alts, while rows = 9 assigns a user-defined number to property rows.

There are a few rules when writing instructions:

+ Syntax is not case-sensitive, hence using ROWS, rows, or Rows all yield the same result

« Spaces and empty lines between properties, values, labels, and parameters are ignored, hence
rows = 9 yields the same result as rows=9

« Spaces should not appear within a property name or property value, hence using row s instead
of rows will generate an error

+ User-defined strings can consist of combinations of letters, numbers, and symbols, for example
laptop_1

+ User-defined strings cannot only consist of numbers

+ User-defined strings cannot include the following symbols: 2 ; ¢ : =, . | () [ 1 * + -

« User-defined strings cannot be a reserved name such as rows

Consider the choice between two generic laptops, namely Laptop A and Laptop B, each characterised
by three attributes, namely processor type (with levels Core i3, Core i5, Core i7, and Core i9), amount
of hard disk storage (with levels 256 GB, 512 GB, 1 TB, and 2 TB), and price (with levels $1200, $1500,
$1800, and $2100). Script 3.1 shows an example of a complete script. In this script, five properties
are defined, namely alts, rows, block, rand and model.

User-defined strings in this script are laptopA, laptopB, proc, PROCESSOR, stor, STORAGE, cost,
and PRICE. Any text after a question mark (?), see lines 1, 6, and 14-16, is considered a comment
and is ignored by Ngene. Including comments in the script is useful for the user to document design
choices, explain attribute levels, etc. Strings chosen by the user should preferably be informative, and
spacing in the script should preferably be functional to improve readability. Script 3.2 does exactly
the same thing as Script 3.1. However, Script 3.1 is clearly more readable since it has informative
strings, legible spacing, and comments.

design

;alts=(alt1,alt2);rows=20;block=4;rand

;model: U(alt1,alt2)=b1*x1[0,1,2,3]+b2*x2[0,1,2,3]1+b3*x3[0,1,2,3]
$

Script 3.2: Less readable script
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3.2 Defining alternatives

The property alts is mandatory in each script. It defines the number of alternatives and gives
them a name. The property alts in Script 3.1 is defined by two strings, laptopA and laptopB,
separated by a comma (, ). This instructs Ngene that the design needs to have two alternatives, and
their respective strings are used later to define the utility function of each alternative in the model
property. For example, the following syntax defines three alternatives in a labelled experiment for
cancer treatment.

;alts = chemotherapy, surgery, immunotherapy

If two or more alternatives are of the same generic label (i.e., unlabelled alternatives that have
the same utility function), then this needs to be indicated, as it influences the design generation.
Unlabelled alternatives can be grouped together by placing parentheses around them. For example,
the alternatives in Script 3.1 are unlabelled and therefore are grouped as follows:

;alts = (laptopA, laptopB)

In a previous version of Ngene, unlabelled alternatives were indicated with an asterisk (*). Such
syntax still works; for example, alts = laptopA*, laptopB# is equivalent to the syntax above, but
has the limitation that it does not allow defining multiple groups of generic alternatives as shown
below.

Alternatives can be a mix of labelled and unlabelled alternatives, for example, in the syntax below
there are three labels, namely car, bus, and train, where two generic car alternatives (with different
routes) are included in the choice set.

;alts = (carl, car2), bus, train

Multiple groups of unlabelled alternatives can also be specified. For example, this syntax defines
two labels, car and train, each with two generic alternatives:

;alts = (car1, car2), (trainl, train2)

An opt-out (no choice) alternative is a special type of alternative that can be added to an experiment.
Since an opt-out alternative is always labelled, it should never be grouped with other alternatives;
see the example syntax below.

;alts = (laptopA, laptopB), optout

Another special type of alternative is a status quo alternative. Such an alternative can share the same
label or have a different label. Below an example where a generic status quo alternative is assumed.
Status quo alternatives are discussed in more detail in Section 6.5.

;alts = (currentpolicy, policyA, policyB)
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You are looking to buy a new laptop for at home. Which of the
following laptops would you prefer?

Laptop A Laptop B
Intel Core i5 processor Intel Core i5 processor
256 GB hard-disk drive 256 GB hard-disk drive
$2100 $2100
@) O

Figure 3.1: Laptop choice task with identical profiles

Choice task 1. You are looking to buy a new laptop for at home.
Which of the following laptops would you prefer?

Laptop A Laptop B
Intel Core i3 processor Intel Core i5 processor
256 GB hard-disk drive 1 TB hard-disk drive
$1500 $1800
® O

Choice task 2. You are looking to buy a new laptop for at home.
Which of the following laptops would you prefer?

Laptop A Laptop B
Intel Core i5 processor Intel Core i3 processor
1 TB hard-disk drive 256 GB hard-disk drive
$1800 $1500
O ®

Figure 3.2: Two choice tasks that capture the same information

When generating an efficient or random design, Ngene performs additional checks when generic
alternatives are present (as identified by a grouping with parentheses) to avoid undesirable choice
tasks. First, Ngene identifies and removes choice tasks where the profiles of alternatives are identical.
Figure 3.1 illustrates such a choice task with completely overlapping attribute levels. Secondly, Ngene
detects and removes choice tasks in the design that capture the same information as other choice
tasks. An example is shown in Figure 3.2 where it is clear that the two choice tasks are essentially
the same since the profiles are merely swapped and at most one of these choice tasks should appear
in the design. Thirdly and most importantly, Ngene automatically avoids choice tasks with strictly
dominant alternatives when parameter priors are available that indicate the preference order of
attribute levels, see Section 3.8. It is important to note that Ngene does not perform these checks for
orthogonal designs, as it is generally not possible to avoid undesirable choice tasks without violating
orthogonality.

Such undesirable choice tasks generally do not exist in experiments in which all alternatives are
labelled. Even if a choice task has identical profiles across the alternatives, an agent would still
making trading-offs on the labels; see, for example, Figure 3.3.

57



Consider a 70 year old patient with advanced prostate cancer. As his doctor, what treat-
ment would you recommend?

Radiotherapy Surgery Neither
Medium risk of permanent Medium risk of permanent
side effects side effects
70% probability of curing 70% probability of curing
patient patient
® O O

Figure 3.3: Treatment choice task with identical profiles

3.3 Defining design size and blocking

Property rows defines the design size, that is, the number of choice tasks in the experimental design,
which equals the number of rows in the design matrix.

The number of rows is typically set to a number that reflects the desired number of choice tasks in a
fractional factorial design. This number should not be too small; see the discussion on determining
an appropriate design size in Section 1.4. If the number of rows in the design is not sufficient to
capture information about all parameters, then Ngene will produce an error: “There are not enough
degrees of freedom. Decrease the number of parameters or increase the number of rows to at least
x", where x is the minimum required design size.

When generating an orthogonal design, the number of rows specified in the script may not be
consistent with any available orthogonal arrays. In that case, Ngene will automatically increase the
design size until it is able to locate an orthogonal design (if it exists).

In Script 3.1 the number of rows is set to 20, thereby generating 20 choice tasks.
;rows = 20

A special case of the number of rows occurs when using fact to generate a full factorial design.
In this case, the default will be that all possible design rows are generated, which can be specified
explicitly as

;rows = all

The number of choice tasks in an experimental design is often too large to give to a single agent,
and hence the design will need to be blocked into smaller subsets. This can be performed by adding
the optional property block to the script, for example:

;block = 4

In this case, the experimental design is blocked into four equal parts (or near-equal parts if the
number of rows is not divisible by the number of blocks). In Script 3.1 where rows = 20, this means
that each block contains five choice tasks. In the survey, each agent is assigned one block of five
choice tasks. Although blocking aims to achieve (a high degree of) attribute level balance, this can
only be guaranteed for orthogonal designs (see Chapter 4). For other design types, including random
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design ? labelled car purchase example
;alts = car, no_car

; fact
;model:
U(car) = con_c
+ eng.dummy * ENGINE[O,1,2,3]
+ col.dummy * COLOURLO,1,2,3]
+ type.dummy * TYPE[0,1,2,3]
? ENGINE: @(Diesel), 1(Petrol), 2(Hybrid), 3(Electric)
? COLOUR: O0(White), 1(Red), 2(Black), 3(Blue)
? TYPE: 0(Sedan), 1(Coupe), 2(Hatchback), 3(Station wagon)
$

Script 3.3: Full factorial design

designs, Ngene minimises the correlation of the block number with the attribute levels, where lower
correlations generally result in a higher degree of attribute level balance within each block. However,
results vary since such correlations are only a proxy for attribute level balance. Since blocking does
not have any impact on other statistical properties of the design, the user can manually re-allocate
choice tasks to blocks if desired.

3.4 Defining design strategy

An instruction in the script is needed that tells Ngene how to generate the design matrix. This
allocation depends on the experimental design strategy. Each strategy requires the use of a specific
property in the script.

There exist three main experimental design strategies; see also Section 1.5.

« Property fact creates a full factorial design, see Section 3.5

+ Property rand create a random fractional factorial design, see Section 3.6

« Property orth creates an orthogonal fractional factorial design, see Chapter 4
+ Property eff creates an efficient fractional factorial design, see Chapter 5

In each script, the selection of a design strategy is mandatory. It is possible to combine properties eff
and orth in the same script, which instructs Ngene to find an orthogonal design with the highest
efficiency. It is not possible to combine fact or rand with orth or eff in the same script, since
these design strategies are in conflict with each other.

3.5 Generating full factorial designs

The property fact can be used to generate a full factorial design. This property has no values and
can be added directly as an instruction; see syntax below and also line 3 in the Script 3.3.

; fact

In Script 3.3, alternative car is characterised by three attributes, namely, engine type, colour and car
type, while no_car is an opt-out alternative without any attributes. When using fact the property
rows can be omitted since it automatically defaults to rows = all, but the latter could also be
explicitly added to the script for clarity reasons. The model property, and how to define utility
functions, will be explained in Section 3.7.
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Running Script 3.3 generates a full factorial design with 4 X 4 X 4 = 64 rows. A depiction of such a
full factorial design was shown in Figure 1.4(a) in Chapter 1. Note that Ngene produces a warning
when running this script: “Defaulting to prior values of zero for the following priors: ‘proc, stor,
cost’. This warning means that no priors for these parameters were specified and hence were set to
zero. This warning can be ignored unless the user wants to specify informative or noninformative
priors to avoid possible strictly dominant alternatives (see Section 3.8).

Now consider again Script 3.1. If property rand would be replaced by property fact and rows = 20
would be replaced by rows = all (or simply omitted), then it would generate a full factorial design
with 64% = 4,096 choice tasks, based on 4° = 64 unique profiles in each alternative, if no further
constraints were imposed. However, since generic alternatives are defined in the script on line 2,
Ngene automatically removes choice tasks where profiles of both laptops are identical, such that
only 4,032 choice tasks remain in the full factorial design.

In most cases the size of a full factorial design is prohibitively large, and hence most choice ex-
periments adopt a fractional factorial experimental design strategy (i.e., an efficient, orthogonal, or
random design).

3.6 Generating random designs

A random fractional factorial design is a random selection from a full factorial design and is simply
referred to as a random design. The property rand can be used to generate such a design by adding
this property without any values to the script.

;rand

To generate a random design in the labelled car purchase example, we simply replace the property
fact in Script 3.3 with the property rand.' Further, property rows is required to specify the desired
number of design rows. For example, to generate a random design with 16 rows (randomly selected
out of 64 rows in the full factorial), we specify rows = 16 as shown in Script 3.4.

Figure 3.4 illustrates a possible result for a random design for the same labelled car purchase example,
noting that Ngene will produce a different random design each time the script is run. In contrast to
a full factorial design, a random design will only contain certain attribute level combinations and is
generally not attribute level balanced.

Using a random design strategy is usually only a good idea if the expected sample size is large (i.e.,
thousands) and if the design size has many rows (i.e., hundreds) to benefit from the variety in the
data that random designs offer.

3.7 Defining model utility functions

When designing a choice experiment, it is good practice to formulate preliminary utility functions
for all alternatives in the choice model, as this assists in understanding how the data later will be
used in model estimation. In Ngene, utility functions are specified through the mandatory property
model . This is the most complex property that requires the most attention. All complex properties
in Ngene, including model and properties for imposing attribute level constraints (require, reject,
cond, see Chapter 6), are specified in an environment that starts with a colon ( : ) where each property

In a previous version of Ngene, the property fact was used for both full factorial designs and random fractional
factorial designs. While this functionality is still available, the rand property is preferred for random designs as we are
expanding its algorithmic capabilities.
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Figure 3.4: Random design and graphical depiction
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design ? labelled car purchase example

;alts = car, no_car

;rows = 16

;rand

;model:

U(car) = con_c
+ eng.dummy * ENGINE[O,1,2,3]
+ col.dummy * COLOUR[OQ,1,2,3]
+ type.dummy * TYPE[O,1,2,3]

? ENGINE: 0(Diesel), 1(Petrol), 2(Hybrid), 3(Electric)

? COLOUR: @o(White), 1(Red), 2(Black), 3(Blue)

? TYPE: 0(Sedan), 1(Coupe), 2(Hatchback), 3(Station wagon)
$

Script 3.4: Random design

value is separated by a special symbol. In the case of the model environment, each property value
is represented by a utility function for an alternative and is separated by a slash (/).

In laptop choice Script 3.1, two utility functions need to be defined, one for alternative laptopA
and one for alternative laptopB. Each utility function in the model property starts with a U and
the alternative label between parentheses, e.g., (laptopA), followed by an equal sign (=). On the
right-hand side of the equal sign, one specifies a function that is linearly additive in the parameters.
These utility functions can contain main effects, interaction effects, and label-specific constants. An
example for the laptop choice experiment is shown below. Note that there is no separator after the
second utility function; including a / after the second utility function would result in an error when
running the script.

;model:
U(laptopA) = proc * PROCESSOR[Q,1,2,3]
+ stor * STORAGE[0,1,2,3]
+ cost * PRICE[O,1,2,3]
/
U(laptopB) = proc * PROCESSOR
+ stor * STORAGE
+ cost * PRICE

? PROCESSOR: @(Core i3), 1(Core i5), 2(Core i7), 3(Core 1i9)
? STORAGE: 0(256 GB), 1(512 GB), 2(1 TB), 3(21B)
? PRICE: 0($1200), 1($1500), 2($1800), 3($2100)

Only main effects are specified in the above utility functions, where proc, stor, and cost are
parameters, and PROCESSOR, STORAGE, and PRICE are attributes. Note that we merely use lower and
upper case in this manual to clearly indicate the difference between model parameters and attributes
(but, as mentioned, the syntax is not case sensitive). Using the same string for a parameter across
multiple alternatives means that it has the same value, i.e., it is a generic parameter. For example, the
parameter proc in alternative laptopA is the same as the parameter proc in alternative laptopB.

Each attribute is followed by a set of allowable attribute levels indicated by a series of values be-
tween square brackets. These values need to be numerical in Ngene, it is not possible to define
PROCESSOR[Core_i3,Core_i5,Core_i7,Core_19] in the syntax. Instead, attribute levels need to be
represented by numbers in the syntax using design coding, estimation coding, or another coding
scheme that is preferred by the user; see Chapter 1.3. Design coding is traditionally used to generate
orthogonal designs. When generating an efficient design, one should typically use estimation coding
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to allow the correct computation of utilities, choice probabilities, and Fisher information. Using the
same string for an attribute across multiple alternatives means that it represents the same generic
attribute with the same attribute levels (but, of course, the levels shown to an agent in each choice
task will generally be different across alternatives). Therefore, the levels of a generic attribute only
need to be defined the first time this attribute appears in a utility function, and can be omitted in
all subsequent alternatives. For example, attribute PROCESSOR in the alternative laptopB allows the
same levels as PROCESSOR in laptopA, namely [0,1,2,3].

If the utility functions of two or more alternatives are identical, e.g., in the case of unlabelled alterna-
tives, then they can be specified simultaneously. For example, the utility functions of the alternatives
laptopA and laptopB in the laptop choice experiment are the same; therefore, in Script 3.1 a con-
venient shortcut is used whereby both utility functions are specified simultaneously on lines 6-9
(repeated below). In this syntax, both alternatives are listed in the same utility function between
parentheses, separated by a comma.

;model:
U(laptopA, laptopB)

proc * PROCESSOR[9,1,2,3]
stor x STORAGE[O,1,2,3]
cost * PRICE[0,1,2,3]

In Script 3.1 we adopted design coding for the attribute levels, e.g., using levels 0, 1, 2, and 3. Note
that these values are merely placeholders that need to be replaced with meaningful descriptions in
the survey. Any other placeholder values could have been used, for example, we could have defined
PROCESSOR[3,5,7,9] where the numbers are more representative for processor types i3, i5, i7, and
i9 to improve the interpretation of attribute levels in the experimental design. To remind oneself of
what each design coded level means, it is recommended to put comments in the script.

While design coding is fine when generating an orthogonal or random design, it is strongly recom-
mended to always use estimation coding in Ngene to resemble the model specification that will be
used in model estimation as this allows counting the number of parameters that need to be esti-
mated (which influences the minimum required design size), and it also allows the computation of
design efficiency measures. In the following syntax, we have converted the above utility functions
to estimation coding. Estimation coding in Ngene requires dummy or effects coding for the levels of
qualitative (categorical) attributes. With respect to quantitative (numerical) attributes, one typically
uses the numerical values shown to agents in the survey as attribute levels in the utility function,
where all levels of an attribute are expressed in the same unit. In the syntax below, processor type is
dummy coded, hard-disk storage is a quantitative variable expressed in GB, and price is expressed
in dollars.

;model: ? using estimation coding
U(laptopA, laptopB) = proc.dummy * PROCESSOR[O,1,2,3]
+ stor * STORAGE[256,512,1024,2048]
+ cost * PRICE[1200,1500,1800,2100]
? PROCESSOR: @(Core i3), 1(Core i5), 2(Core i7), 3(Core i9)
? STORAGE: 256 GB, 512 GB, 1024 GB, 2048 GB
? PRICE: $1200, $1500, $1800, $2100

A qualitative attribute can be dummy coded in Ngene by adding .dummy to the associated parameter.
Dummy coding replaces the attribute variable with L — 1 dummy variables, where L is the number
of levels of the attribute, and where each of the L — 1 dummy variables has its own parameter.
In the above syntax, .dummy is added to proc so that the attribute PROCESSOR is converted into
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three dummy coded variables. Since proc is a generic parameter in both alternatives, the attribute
PROCESSOR in laptop B will automatically be dummy coded as well, even when .dummy is omitted
after proc in the utility function of laptop B. Ngene considers the last level by default as the base
level. This means that level 3 (Core 19 processor) has base dummy coding (0, 0, 0), level 0 is dummy
coded as (1,0,0), level 1 is coded as (0, 1,0), and level 2 is coded as (0, 0, 1). Parameter proc is now
split into three separate parameters, where the first parameter expresses the utility of level 0 relative
to base level 3, the second parameter expresses the utility of level 1 (relative to the base), and the
third parameter expresses the utility of level 2 (relative to the base). If one prefers Core i3 to be the
base level, then one can rearrange the levels in the utility function so that 0 becomes the last level,
i.e., PROCESSOR[1,2,3,0] or PROCESSOR[3,2,1,0].

Similarly, if effects coding is preferred over dummy coding, then one adds .effects to the relevant
parameter name, where the last level is again by default considered the base level with associated
effects coding (-1, —1, —1). The coding of the other levels is the same as with dummy coding, namely,
level 0 is effects coded as (1, 0,0). With effects coding, the first parameter expresses the utility of
level 0 relative to the average (instead of the base level in dummy coding), the second parameter
expresses the utility of level 1 relative to the average, etc.

It is possible to also apply dummy or effects coding to quantitative attributes hard-disk storage and
price, but this removes the advantages that a quantitative variable has over a qualitative variable,
namely the computation and interpretation of willingness-to-pay becomes less straightforward and
one loses the ability to interpolate and extrapolate utilities (e.g., predict utilities for a hard-disk of
size 768 GB or 3 TB).

If desired, a continuous non-linear transformation can be applied to the quantitative attribute lev-
els to describe a specific type of behaviour. In the syntax above, STORAGE has exponentially in-
creasing attribute levels and one may assume that the additional utility decreases when hard-disk
storage increases. This could be achieved by applying, for example, a logarithmic transformation
such that we replace the levels for hard-disk storage, [256,512,1024,2048], with transformed levels,
[5.545,6.238,6.931,7.624]1, where In(256) = 5.545.

If attributes have different levels, then they need to be named with different strings in the syntax. In
the utility functions below, we assume that there are four price levels in attribute PRICEA for Laptop
A, while only two price levels exist for Laptop B in attribute PRICEB. Since the utility functions are
no longer the same, they need to be specified separately.

;model:
U(laptopA) = proc.dummy * PROCESSOR[@,1,2,3]

+ stor * STORAGE[256,512,1024,2048]

+ cost * PRICEA[1200,1500,1800,2100]

/
U(laptopB) = proc * PROCESSOR

+ stor * STORAGE

+ cost * PRICEB[1800,2100]
? PROCESSOR: ©(Core i3), 1(Core i5), 2(Core i7), 3(Core 1i9)
? STORAGE: 0(256 GB), 1(512 GB), 2(1 TB), 3(2TB)
? PRICEA/B: $1200), $1500, $1800, $2100

The levels of a qualitative attribute would preferably be assigned in a specific way, e.g., from small to
large or in increasing or decreasing order of preference for an ordinal variable to facilitate checking
for strictly dominant alternatives (see Section 3.8). For example, in Script 3.1 we assign design codes
to processor types in increasing order of speed. The order in which attribute levels are shown in a
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design ? Treatment choice example
;alts = radiotherapy, surgery, neither

;rows = 48
;block = 4
;rand
;model:
U(radiotherapy) = con_r
+ side_r.effects * SIDE_EFFECTS[O,1,2]
+ cure_r * PROB_CURE[0.3,0.5,0.7,0.9]
/
U(surgery) = con_s
+ side_s.effects * SIDE_EFFECTS
+ cure_s * PROB_CURE
? SIDE_EFFECTS: @(low risk), 1(medium risk), 2(high risk)
? PROB_CURE: 30%, 50%, 70%, 90%
$

Script 3.5: Design with opt-out alternative

utility function is not important. In other words, one could have used PRICE[1800,1500,2100,1200]
or PROCESSOR[2,0,3,1], where 0 and 3 still represent the slowest and fastest processors, respectively.

Our laptop choice example considered unlabelled alternatives where all utility functions have the
same attributes and the same generic parameters. Let us now consider a labelled experiment related
to the treatment choice task shown in Figure 3.3, which has labelled alternatives radiotherapy,
surgery, and opt-out alternative neither.In Script 3.5, each treatment alternative has two attributes,
namely the risk of side effects (with three levels) and the probability of curing the patient (with four
levels). In a labelled experiment, the parameters can be alternative-specific, hence we use a different
parameter name side_r and side_s for the side effects of radiotherapy and surgery, respectively.
Similarly, two different parameters, cure_r and cure_s, are used for the attribute that describes the
probability of curing the patient. In addition, label-specific coefficients con_r and con_s are added to
the utility functions of radiotherapy and surgery, where the opt-out is the reference alternative and
does not have a constant (that is, it is normalised to zero). Although adding label-specific constants
to utility functions is important when generating efficient designs, they have no impact on the
generation of full factorial, orthogonal, and random designs.

It is important to realise that dummy or effects coding increases the number of parameters if the
attribute has more than two levels. The model specified in Script 3.5 has 8 parameters in total,
namely 2 constants, 4 coefficients for the qualitative attribute, and 2 coeflicients for the quantitative
attribute. Experiments where quantitative attributes have many levels will result in a model with
many parameters and therefore will require larger design sizes (i.e., more rows).

If a certain alternative is defined in alts but no utility function for this alternative is specified in
model, then Ngene fixes its utility to zero. This is useful for an opt-out alternative, which has no
attributes, and its utility is typically set to zero. To illustrate, in Script 3.5 we specified neither
in the alts property but omitted its utility function in the model property such that its utility is
set to zero. Instead of normalising the constant for neither, one could also normalise one of the
other constants. For example, in the syntax below the constant for radiotherapy is normalised to
zero while a constant for the opt-out alternative is estimated. This results in a model that describes
identical behaviour with the same number of parameters.
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design ? Mode choice example
;alts = car, train, bike

;rows = 60
;block = 10
;rand
;model:
U(car) = con_c
+ tt_car % TRAVELTIME_CAR[5,10,15] ? car travel time in minutes
+ fuel * FUELCOST[1,2,3] ? fuel cost in dollars
+ park * PARKING[1,2] ? parking cost in dollars
/
U(train) = con_t
+ access * ACCESSTIME[1,5,10] ? access time in minutes
+ tt_train * INVEHICLETIME[10,15,20] ? train time in minutes
+ wait * WAITINGTIMELS,10] ? waiting time in minutes
+ trans * TRANSFERS[0,1] ? number of transfers
+ seating * SEAT[1,0] ? seating availability
+ fare * TICKETPRICE[2,3,4] ? train fare in dollars
/
U(bike) = tt_bike * TRAVELTIME_BIKE[30,40,50] ? bike travel time in minutes
$
Script 3.6: Design for labelled experiment
;model:

U(radiotherapy) = side_r.effects * SIDE_EFFECTS[0,1,2]

+ cure_r * PROB_CURE[0.3,0.5,0.7,0.9]
/
U(surgery) = con_s
+ side_s.effects * SIDE_EFFECTS
+ cure_s * PROB_CURE
/
U(neither) = con_n

In labelled experiments, it is also possible to have entirely different attributes across alternatives. An
example is shown in Script 3.6 where mode choice alternatives car, train, and bike have different
utility functions with different attributes.

Finally, if an attribute has many equally spaced levels, then Ngene provides a shortcut to define levels.
For example, [6:20:2] is automatically replaced in Ngene with levels [6,8,10,12,14,16,18,20].
The format of this shortcut is as follows: [low : high : step], where low is the lowest level, high is
the highest level, and step is the difference between consecutive levels.

3.8 Defining attribute level preference order

As mentioned in Section 3.2, generating experimental designs for choice experiments with unlabelled
alternatives may require additional checks to avoid undesirable choice tasks. Choice tasks with a
strictly dominant alternative are among the most common undesirable choice tasks. To detect and
avoid such choice tasks, it is necessary to specify the preference order of the levels of each attribute
in the model specification in the Ngene script. The definition of a strictly dominant alternative is
given in Section 1.6. An example is shown in Figure 3.5, where Laptop A is a strictly dominant
alternative, since this laptop has a faster processor and more hard-disk storage at a lower price, and
hence all agents are expected to choose Laptop A and make no trade-offs on any of the attributes.
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You are looking to buy a new laptop for at home. Which of the
following laptops would you prefer?

Laptop A Laptop B
Intel Core i7 processor Intel Core i3 processor
1 TB hard-disk drive 256 GB hard-disk drive
$1500 $2100
® ©)

Figure 3.5: Laptop choice task with strictly dominant alternative

Note that strictly dominant alternatives are not a major concern in labelled experiments and, by defi-
nition, cannot occur when attributes are different across alternatives such as in Script 3.6. Therefore,
defining the preference order of attribute levels is typically only needed in unlabelled experiments.
Further, we remind the user that undesirable choice tasks cannot be avoided in orthogonal designs,
and hence defining attribute level preference order is only advised when generating full factorial,
random, or efficient designs.

The preference order of the attribute levels can be defined in Ngene by setting priors for each
attribute in the utility functions in the model property. If no prior information is specified, then
Ngene defaults to zero priors, meaning that no information is available, not even the sign of the
parameter or the preference order of the attribute levels. We refer to Section 1.3 for more information
about different types of priors. In this section, we consider local noninformative priors where only
the preference order of attribute levels is known. Other types of prior are discussed when generating
efficient designs in Chapter 5.

Priors in Ngene are indicated by a value in square brackets directly after the parameter string in
the utility functions of the model property. To indicate the preference order of the attribute levels,
this value consists of a plus (+) to indicate a positive relationship between the attribute levels and
utility, or a minus (-) to indicate a negative relationship. If no prior is defined, as in all previous
scripts in this chapter, then no a priori preference order for attribute levels is assumed.

The utility functions in Script 3.7 illustrate how to define priors to indicate preference orders of
the attributes. Since utility is expected to increase with increasing hard disk storage, a positive
relationship is indicated in the prior for parameter stor. To indicate that higher price levels result
in lower utility, a negative relationship is indicated in the prior for parameter cost. Furthermore, to
indicate that a Core i5 processor (level 1) is preferred over a Core i3 processor (level 0), and a Core
i7 processor (level 2) is preferred over a Core i5 processor (level 1), and a Core i9 processor (level 3)
is preferred over a Core i7 processor (level 2), a positive relationship between utility and processor
level is indicated for dummy parameters proc. The preference order is based on the number used
for each level, so proc.dummy[+] * PROCESSOR[2,3,0,1] would indicate the same preference order
of the processor levels, where larger numbers indicate more utility.

Note that prior information does not need to be repeated for laptopB since the parameter names are
generic across the two alternatives, and hence the priors for parameters in laptopB automatically
take on the same value.

Script 3.7 generates a full factorial design that includes only 2,160 choice tasks, much less compared
to the 4,032 choice tasks generated when no prior information was available. In other words, many
undesirable choice tasks with strictly dominant alternatives have now automatically been removed
from the design.
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design ? Laptop choice example
;alts = (laptopA, laptopB)
;fact  ? implicitly assumes that rows = all

;model:

U(laptopA, laptopB) = proc.dummy[+] * PROCESSOR[O,1,2,3]
+ stor[+] * STORAGE[256,512,1024,2048]
+ cost[-] * PRICE[1200,1500,1800,2100]

? PROCESSOR: @(Core i3), 1(Core i5), 2(Core i7), 3(Core i9)

? STORAGE: 256 GB, 512 GB, 1024 GB, 2048 GB

? PRICE: $1200, $1500, $1800, $2100

$

Script 3.7: Indicating preference order to exclude strictly dominant alternatives

Sometimes not all attributes exhibit an obvious preference order for their levels. An example is
shown in the syntax below, where the screen size is added to the utility function as a dummy-coded
attribute with levels 13", 15", and 17”. Some agents may prefer a small screen size for portability
reasons, while other agents may prefer a large screen size for productivity reasons. In this case, we
do not indicate a preference order for the levels of attribute SCREENSIZE and hence Ngene ignores
this attribute when checking for strictly dominant alternatives.

;model:
U(laptopA, laptopB) = proc.dummy[+] * PROCESSOR[O,1,2,3]
+ stor[+] * STORAGE[256,512,1024,2048]
+ cost[-] * PRICE[1200,1500,1800,2100]
+ size.dummy * SCREENSIZE[13,15,17] ? screen size in inches

Not all unlabelled experiments suffer from strictly dominant alternatives. In Script 3.8 we consider
the choice to buy a new car based on the type of engine (diesel, petrol, LPG, or electric), the colour
of the car (white, red, black, or blue), the type of transmission (manual or automatic) and the price
($20,000, $25,000 or $30,000). Only price has a obvious preference order, whereas preferences towards
the other attributes will vary from person to person. Strictly dominant alternatives only occur when
the levels of all (or most) attributes have a clear preference order, hence in this case there is no
need to set priors to avoid dominant alternatives (although setting informative priors will assist in
generating more efficient designs, see Chapter 5).

3.9 Interaction effects

In addition to main effects, utility functions can also contain interaction effects that describe the
(additional) impact on utility of specific combinations attribute levels. Although the specification
of interaction effects has no impact on the generation of a full factorial or random design, it does
impact the generation of orthogonal designs (where Ngene will aim to minimise correlations) and
efficient designs (where Ngene will optimise the design for the estimation of the parameters of the
interaction effects as well). Not considering interaction effects during the design phase does not
mean that these effects cannot be estimated later on; in most cases, a sufficiently large design size
will allow the estimation of many (but perhaps not all) interaction effects. However, to guarantee
that a certain interaction effect can be estimated after data collection, it may be wise to include the
interaction effect in the utility function during the design phase.

To illustrate, the utility functions in the syntax below include a multiplication of the quantitative
variable STORAGE with the quantitative variable PRICE. If a laptop in a certain choice task has a
hard-disk with 256 GB and a price of $1500, then the interaction term becomes 256 X 1500 = 384, 000,

68



12

13

14

15

16

17

18

19

20

design ? Car choice example
;alts = (car1, car2)

;rows = 60
;block = 5
;rand
;model: ? using estimation coding
U(car1) = eng.dummy * ENGINE[@,1,2,3]
+ col.dummy * COLOURL®,1,2,3]
+ trans.dummy * TRANSMISSION[O,1]
+ cost * PRICE[20000,25000,30000]
/
U(car2) = eng * ENGINE
+ col * COLOUR
+ trans * TRANSMISSION
+ cost * PRICE
? ENGINE: 0(Diesel), 1(Petrol), 2(LPG), 3(Electric)
? COLOUR: o0(White), 1(Red), 2(Black), 3(Blue)
? TRANSMISSION: @(Manual), 1(Automatic)
? PRICE: $20,000, $25,000, $30,000
$

Script 3.8: No clear preference order for most attributes

which is multiplied with the parameter stor_x_cost to compute the utility of this interaction effect.
A positive parameter associated with this interaction effect can be interpreted as agents becoming
less price sensitive when hard-disk storage increases, or can be interpreted as agents attaching more
utility to hard-disk storage at higher price levels.

;model:
U(laptopA, laptopB)

proc.dummy[+] * PROCESSOR[0,1,2,3]

stor[+] * STORAGE[256,512,1024,2048]

cost[-] * PRICE[1200,1500,1800,2100]

stor_x_cost * STORAGE * PRICE

proc@_x_cost * PROCESSOR.level[@] * PRICE

procl_x_cost * PROCESSOR.level[1] * PRICE
+ proc2_x_cost * PROCESSOR.level[2] * PRICE

? PROCESSOR: @(Core i3), 1(Core i5), 2(Core i7), 3(Core i9)

? STORAGE: 256 GB, 512 GB, 1024 GB, 2048 GB

? PRICE: $1200, $1500, $1800, $2100

+ + + + +

In the syntax above, the qualitative processor attribute has also interacted with the quantitative
price attribute. Since the processor type is dummy coded, separate multiplications need to be made.
If an attribute has L levels, then only L — 1 levels can appear in an interaction. In this case, we have
interacted levels 0, 1, and 2 with price, but we could also have interacted levels 1, 2, and 3 with price,
or levels 0, 2 and 3 with price. The suffix .level[x] after an attribute returns a value of one if this
attribute has level x, and zero otherwise. For example, if a laptop in a certain choice task has a Core
i7 processor and a price of $1200, then the interaction term PROCESSOR.level[2] * PRICE is equal to
1 X 1200 (while the other interaction effects between processor and price are equal to zero), which
is multiplied with the parameter proc2_x_cost to obtain the utility of this interaction effect.

Ngene can check for strictly dominant alternatives based on main effects alone; therefore, it is not
necessary to indicate a preference order of interaction effects (+ or -). For example, no prior was
specified for stor_x_cost.
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One should be aware that adding interactions between two dummy or effects-coded variables may
require a large number of interaction terms and parameters. For example, in the syntax below we
now also dummy-coded the storage attribute and added nine interaction terms between levels of
dummy coded attributes PROCESSOR and STORAGE.

;model:

U(laptopA, laptopB)
= proc.dummy[+]

stor.dummy[+]

cost[-]

* PROCESSOR[0,1,2,3]

* STORAGE[256,512,1024,2048]

* PRICE[1200,1500,1800,2100]

proc@_x_stor256 * PROCESSOR.level[0] * STORAGE.level[256]

proc@_x_stor512 * PROCESSOR.level[@] * STORAGE.level[512]

proc@_x_stor1024 * PROCESSOR.level[@] * STORAGE.level[1024]

proc1_x_stor256 * PROCESSOR.level[1] * STORAGE.level[256]

procl_x_stor512 * PROCESSOR.level[1] * STORAGE.level[512]

procl_x_stor1024 * * STORAGE.level[1024]
* * STORAGE.level[256]
* * STORAGE.level[512]
* * STORAGE.level[1024]

PROCESSOR. level[1]
PROCESSOR. level[2]
PROCESSOR.1level[2]
PROCESSOR. level[2]

proc2_x_stor256
proc2_x_stor512
proc2_x_stor1024

+ 4+ + 4+ + + + + + + 4+

The syntax below also includes an interaction term between PROCESSOR and STORAGE, but instead
of considering dummy variables, the interaction term treats both attributes as quantitative, e.g., it
computes 3 X 2024 if both attributes have the largest level. In this case, only a single parameter,
proc_x_stor, is estimated for the interaction. While this may be appropriate in some cases, in most
cases with qualitative variables it is required to interaction individual attribute levels as in the syntax
above.

;model:

U(laptopA, laptopB) = proc.dummy[+]
stor.dummy[+]
cost[-]
proc_x_stor

PROCESSOR[0,1,2,3]
STORAGE[256,512,1024,2048]
PRICE[1200,1500,1800,2100]
PROCESSOR * STORAGE

+ 4+ o+
* % % *

In some cases, an attribute may be added only as an interaction effect in the utility function and not
as a main effect. This can be easily done for quantitative attributes, as shown in the syntax below
where STORAGE appears only in an interaction with PRICE. The parameter cost_x_stor expresses
to what extent the price sensitivity depends on storage capacity. However, adding a qualitative
attribute such as PROCESSOR only as an interaction effect is more complex as it first needs to be
defined as a dummy or effect-coded variable before it can be used in an interaction. This process is
explained in Section 7.2.

;model:
U(laptopA, laptopB) = proc.dummy[+] * PROCESSOR[0,1,2,3]
+ cost[-] * PRICE[1200,1500,1800,2100]
+ cost_x_storage * PRICE * STORAGE[256,512,1024,2048]

Finally, the syntax below shows an example of utility functions in a labelled experiment where an
interaction effect is only added for the train alternative. This interaction term is added to capture
the effect that agents may become more sensitive to travel time inside the train if no seat is available,
i.e, the value of the parameter tt_x_noseat is expected to be negative. Recall that strictly dominant
alternatives by definition do not occur in labelled experiments, and hence it is not necessary to
indicate the preference order of attribute levels.
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;model:
U(car)

U(train)

U(bike)

N~ + + +

I~ + + + + + + +

con_c
tt_car
fuel
park

con_t
access
tt_train
wait

trans
seat.dummy
fare
tt_x_noseat

tt_bike

*

* % %k X X X ¥

TRAVELTIME_CARL5,10,15]
* FUELCOST[1,2,3]

PARKINGL1,2]

ACCESSTIMEL1,5,10]

INVEHICLETIME[L10,15,20]
WAITINGTIMELS,10]
TRANSFERS[0Q,1]

SEAT[1,0]

TICKETPRICE[2, 3,4]

INVEHICLETIME * SEAT.level[0]

TRAVELTIME_BIKE[ 30, 40,50]
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Orthogonal designs

This chapter describes how to generate orthogonal designs in Ngene syntax for both labelled and
unlabelled experiments. Orthogonal designs are fractional factorial experimental designs that have a
specific structure of attribute level combinations that covers the space spanned by the attribute levels
equally in all dimensions. Orthogonal designs are particularly useful when no prior information
is available about the parameters, when no other constraints on combinations of attribute levels
within a choice task are imposed, and when strictly dominant alternatives are not a concern (e.g., a
labelled experiment or an unlabelled experiment where most attribute levels do not have an obvious
preference order). In all other cases, an efficient design (see Chapter 5) would be preferred to allow
more flexibility in terms of considering attribute level constraints and prior information.

4.1 Orthogonal design generation

In Ngene, you can create orthogonal designs by setting the property orth, which takes the place
of the property fact or rand used to generate full factorial designs or random fractional factorial
designs, as discussed in the previous chapter.

;orth

Property orth can have an additional value to indicate how the orthogonal design needs to be
generated, namely,

« orth = sim — generates a simultaneous orthogonal design (default)
« orth = ood — generates a sequential optimal orthogonal design
« orth = seq or seq2 — generates a sequential randomised orthogonal design

If no value is specified, then the default is orth = sim and Ngene applies a simultaneous orthogonal
design procedure that locates a design that is orthogonal for all attributes and alternatives simul-
taneously. A simultaneous orthogonal design is typically used for labelled experiments, but it can
also be applied to unlabelled experiments if desired.

For unlabelled experiments with generic alternatives one can specify orth = ood to use the method
of Street et al. (2005) described in Section 1.5.2 to generate a sequential orthogonal design with
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design ? labelled car purchase example

;alts = car, no_car

;rows = 16

;orth

;model:

U(car) = con_c
+ eng.dummy * ENGINE[O,1,2,3]
+ col.dummy * COLOUR[OQ,1,2,3]
+ type.dummy * TYPE[0,1,2,3]

? ENGINE: 0(Diesel), 1(Petrol), 2(Hybrid), 3(Electric)

? COLOUR: @(White), 1(Red), 2(Black), 3(Blue)

? TYPE: 0(Sedan), 1(Coupe), 2(Hatchback), 3(Station wagon)
$

Script 4.1: Orthogonal design

minimum overlap. This procedure ensures minimum attribute level overlap across alternatives by
sequentially applying generators to create attribute levels for each consecutive alternative based on
the attribute levels of the first alternative. Although previous versions of Ngene reported D-efficiency
percentages for optimal orthogonal designs, these are no longer reported since these percentages
can be misleading as assumptions underlying these computations are generally not met in practice
(e.g., these percentages are invalid when using dummy or effects coding, see Section 1.5.2) and these
percentages can only be computed for some orthogonal designs.

An alternative method for generating sequential orthogonal designs is using orth = seq or orth
= seq2, where the former is used in unlabelled experiments and the latter can be used in labelled
experiments where only some attributes are the same across alternatives. When using seq, the
attribute levels of each consecutive alternative are generated by randomising the order of the profiles
in the first alternative across rows. In most cases, one would prefer to use ood over seq, but seq
may be desirable if one prefers some attribute level overlap or if one prefers not to impose strong
correlations between alternatives by applying generators. Using orth = seq2 generates only the
levels of generic attributes sequentially across the alternatives by randomising the levels, while the
levels of other attributes are generated to be simultaneously orthogonal.

An example is shown in Script 4.1 where alternative car is characterised by three attributes, namely,
engine type, colour and car type, while no_car is an opt-out alternative without any attributes.

The resulting orthogonal design with 16 choice tasks is shown in Figure 4.1 and its first choice
task with profile (0,3,3) is shown in Figure 4.2. Orthogonal designs are not unique; there may exist
multiple orthogonal arrays for the same design dimensions. Further, one can create different choice
tasks with the same orthogonal array by assigning design codes to different attribute levels (e.g.,
instead of using design code 0 for diesel engine, one could assign it to petrol engine). Ngene simply
reports the first orthogonal design it finds and will not report all. If one is interested in the most
efficient orthogonal design, then property orth can be used in conjunction with property eff as
explained in Chapter 5.

In Chapter 3 a depiction of a random fractional factorial design was shown in Figure 3.4. As can be
seen, the orthogonal design in Figure 4.1 has a very specific structure, namely, each combination
of attribute levels appears the same number of times (in this case exactly once). Graphically, this
means that looking at the cube from any side one would see exactly 16 orbs.

Script 4.2 generates a sequential optimal orthogonal design for an unlabelled car purchase choice
experiment with two alternatives using orth = ood. The resulting experimental design is shown
in Table 4.1, where the attribute levels for the first alternative, car1, are based on an orthogonal
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Car No car

Choice task Engine Colour Type

1 0 3 3 -
2 1 3 2 -
3 2 3 1 -
4 3 3 0 -
5 0 2 2 -
6 1 2 3 -
7 2 2 0 -
8 3 2 1 -
9 0 1 1 -
10 1 1 0 -
11 2 1 3 -
12 3 1 2 -
13 0 0 0 -
14 1 0 1 -
15 2 0 2 -
16 3 0 3 -

Figure 4.1: Orthogonal design and graphical depiction
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Consider purchasing a new car of the same brand and price as
your current car. Would you purchase this car with the following

characteristics?
Diesel engine
Blue colour
Station wagon type
O Yes, I would buy ® No thanks

Figure 4.2: Choice task for labelled car purchase example

design ? unlabelled car purchase example
;alts = (car1, car2)

;rows = 16
;orth = ood
;model:
U(car1, car2) = eng.dummy * ENGINE[O,1,2,3]
+ col.dummy = COLOUR[O,1,2,3]
+ type.dummy * TYPE[O,1,2,3]
? ENGINE: O(Diesel), 1(Petrol), 2(Hybrid), 3(Electric)
? COLOUR: O0(White), 1(Red), 2(Black), 3(Blue)
? TYPE: 0(Sedan), 1(Coupe), 2(Hatchback), 3(Station wagon)
$

Script 4.2: Sequential orthogonal design

array, and the attribute levels for the second alternative, car2, are derived from the attribute levels
of carl1 using generator 111, see also Section 1.5.2. The first choice task with profiles (0, 0, 0) and
(1,1,1) is shown in Figure 4.3.

Replacement of orth = ood with orth = seq in Script 4.2 would generate a sequential randomised
orthogonal design as shown in Table 4.2. The attribute levels for the first alternative, car1, are the
same in this case as in Table 4.1. However, the profiles for the second alternative, car2, are derived
from the profiles of car1 by randomising their order. For example, the profile in row 1 for car1,
(0,0, 0), appears as a profile in row 14 for car2, and the profile in row 2 for car1 appears as a profile
in row 15 for car2.

Consider purchasing a new car of the same brand and price as
your current car. Which car would you prefer to purchase?

Diesel engine Petrol engine
White colour Red colour
Sedan Coupe
O Carl @® Car2

Figure 4.3: Choice task for unlabelled car purchase example
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Car1 Car 2

Choice task Engine Colour Type Engine Colour Type

1 0 0 0 1 1 1
2 1 1 0 2 2 1
3 2 2 0 3 3 1
4 3 3 0 0 0 1
5 1 0 1 2 1 2
6 0 1 1 1 2 2
7 3 2 1 0 3 2
8 2 3 1 3 0 2
9 2 0 2 3 1 3
10 3 1 2 0 2 3
11 0 2 2 1 3 3
12 1 3 2 2 0 3
13 3 0 3 0 1 0
14 2 1 3 3 2 0
15 1 2 3 2 3 0
16 0 3 3 1 0 0

Table 4.1: Sequential optimal orthogonal design for unlabelled car purchase example

Car1 Car 2

Choice task Engine Colour Type Engine Colour Type

1 0 0 0 2 0 2
2 1 1 0 3 0 3
3 2 2 0 1 3 2
4 3 3 0 0 2 2
5 1 0 1 2 2 0
6 0 1 1 3 1 2
7 3 2 1 1 2 3
8 2 3 1 0 1 1
9 2 0 2 3 3 0
10 3 1 2 2 3 1
11 0 2 2 1 0 1
12 1 3 2 3 2 1
13 3 0 3 0 3 3
14 2 1 3 0 0 0
15 1 2 3 1 1 0
16 0 3 3 2 1 3

Table 4.2: Sequential randomised orthogonal design for unlabelled car purchase example
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4.2 Existence of orthogonal designs

Orthogonal fractional factorial designs only exist for specific design sizes (i.e., numbers of rows)
depending on the number of attributes and the number of levels of each attribute and may not
exist at all for certain design dimensions. In Ngene, a user can simply specify the desired number
of rows, and Ngene will try to locate an orthogonal design of that size. If it does not exist, Ngene
automatically increases the number of rows and reports the first orthogonal design that it finds (if
it exists). If an orthogonal design does not exist for any design size, Ngene will report “No design
found" and the user will need to change the number of levels of some of the attributes. Alternatively,
one can use a full factorial design (see Chapter 3), which is orthogonal by definition but typically
has a very large design size, or switch to a more flexible design type such as an efficient design (see
Chapter 5).

For example, if the user specified rows = 14 in line 3 of Script 4.1 then Ngene reports the following
message: “Could not locate design in 14 rows. Switching to design with 16 rows". If the attribute
colour has seven levels, i.e., if the user specified COLOUR[®,1,2,3,4,5,6] in Script 4.1, then Ngene
increases the design size to 28 rows. If in addition the number of car types is increased to seven
via TYPE[0,1,2,3,4,5,6], then an orthogonal fractional factorial design no longer exists. Generally,
orthogonal designs tend to be more feasible for choice experiments where the majority of attributes
have only a few levels, and the number of levels is predominantly the same across different attributes.

If a choice experiment contains generic attributes, then a design generated using orth = seq or
orth = ood is more likely to exist and have a smaller number of rows than a design generated using
orth = sim since it requires only orthogonality across attributes within each alternative and not
necessarily across alternatives. For example, replacing orth = ood with orth = sim in Script 4.2
would generate a design of size 24 instead of 16 rows.

4.3 Blocking of orthogonal designs

Orthogonal designs can be large in terms of the number of rows, hence in most cases it is necessary
to block the design. Adding block = 2 to Script 4.1 results in the design shown in Table 4.3. For
orthogonal designs, Ngene applies an orthogonal blocking strategy such that attribute level balance
is achieved within each block. In Table 4.3 it can be observed that attribute level 0 appears exactly
twice within each block, and the same holds for every other level.

Script 4.3 illustrates another example with two labelled alternatives, car and bus, each having
different attributes. The smallest simultaneous orthogonal design that exists has 18 rows; see Table
4.4. In this case, we have blocked the design into 3 equal parts, where each block satisfies attribute
level balance.

4.4 Interactions in orthogonal designs

Section 3.9 discussed how to include interactions effects in the model specification. Although the
specification of interaction effects does not affect the generation of full factorial and random designs,
it does influence the generation of orthogonal designs when using orth = sim or orth = seq. Note
that interaction effects are not considered when generating sequential optimal orthogonal designs
using orth = ood due to the way such designs are generated.

If the analyst knows in advance which interaction effects will likely be included in the final model,
then Ngene can make sure that the interaction effects are not perfectly correlated with the main
effects, such that their associate parameters can be estimated. Although ideally each interaction effect
is orthogonal with all main effects and all other interaction effects, this is in most cases not possible.
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Car No car

Choice task Block Engine Colour Type

1 1 0 0 0 -
2 1 2 0 2 -
3 1 3 3 0 -
4 1 1 3 2 -
5 1 1 2 3 -
6 1 3 2 1 -
7 1 2 1 3 -
8 1 0 1 1 -
9 2 2 2 0 -
10 2 0 2 2 -
11 2 1 1 0 -
12 2 3 1 2 -
13 2 3 0 3 -
14 2 1 0 1 -
15 2 0 3 3 -
16 2 2 3 1 -

Table 4.3: Blocked orthogonal experimental design

design ? mode c
;alts = car, bus
;rows = 18
;block = 3
;orth = sim
;model:
U(car) = con_c
+ tt_car
+ toll
/
U(bus) = travel
+ wait
+ trans
+ fare
$

hoice example

* TIME[15,20,25] ? travel time (minutes)
TOLL[2,3,4] ? toll costs (dollars)

*

INVEHTIME[20, 25, 30]
WAITTIMEL2,4,6]
TRANSFERS[Q, 1]
FARE[1,2,3]

in-vehicle time (minutes)
waiting time (minutes)
number of transfers

bus fare (dollars)

N ) ) )

Script 4.3: Simultaneous orthogonal design with three blocks
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Car Bus

Choice task Block Time Toll In-veh time Wait time Transfers Fare
1 1 15 2 20 2 0 1
2 1 20 3 25 4 0 2
3 1 25 4 30 6 0 3
4 1 20 3 30 6 1 1
5 1 25 4 20 2 1 2
6 1 15 2 25 4 1 3
7 2 25 3 25 2 0 1
8 2 15 4 30 4 0 2
9 2 20 2 20 6 0 3
10 2 25 2 30 4 1 1
11 2 15 3 20 6 1 2
12 2 20 4 25 2 1 3
13 3 20 4 20 4 0 1
14 3 25 2 25 6 0 2
15 3 15 3 30 2 0 3
16 3 15 4 25 6 1 1
17 3 20 2 30 2 1 2
18 3 25 3 20 4 1 3

Table 4.4: Blocked simultaneous orthogonal design for mode choice example

Instead, Ngene considers all possible orthogonal designs and selects the design that minimises the
correlations between the interaction effects and the main effects that are specified in the utility
functions via the model property.

Often, only at the model estimation stage it is known which interaction effects are relevant and no
interaction effects are specified in the utility functions at the experimental design stage. In most
cases, one will still be able to estimate most, but perhaps not all, interaction effects. To increase the
likelihood that interaction effects can be estimated without adding all interaction effects a priori to
utility functions, one could make all interaction effects uncorrelated with all main effects' by adding
the following property to the script:

; foldover

This property appends the design with a mirror-image foldover. To illustrate, consider again Script
4.1 and let us add the foldover property to the syntax. Instead of the original 16 rows, the design
now consists of 32 rows where the first 16 rows are the same as in Figure 4.1 while the next 16 rows
are a mirror image of the previous 16 rows in which the attribute levels have been re-labelled in
reverse, namely 0 — 3,1 — 2,2 — 1, and 3 — 0, see Table 4.5.

Although a design with a mirror-image foldover has twice as many choice tasks, the resulting design
is readily blocked into two blocks, as indicated in Table 4.5. Therefore, the foldover only increases
the size of the experimental design and does not increase the number of choice tasks given to each
agent.

INote that this does not mean that each interaction effect is uncorrelated with all other interaction effects. Therefore,
this still does not guarantee that one can estimate all parameters of all interaction effects.
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No car

Car

Type

Colour

Choice task Block Engine

10
11

12
13
14
15
16

17
18
19
20
21

22
23
24
25
26
27
28
29
30
31

32

Table 4.5: Orthogonal design with mirror-image foldover
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design ? Laptop choice example

;alts = (laptopA, laptopB)
;rows = 9

;orth = ood

;model:

U(laptopA, laptopB) = proc.dummy[+] * PROCESSOR[Q,1,2]

+ stor.dummy[+] * STORAGE[Q,1,2]

+ cost[-] * PRICE[1500,1800,2100]
? PROCESSOR: @(Core i3), 1(Core i5), 2(Core i7)

? STORAGE: 0(256 GB), 1(512 GB), 2(1 TB)

? PRICE: $1500, $1800, $2100

$

Script 4.4: Orthogonal design cannot avoid strictly dominant alternatives

Laptop A Laptop B

Choice task Processor  Storage Price Processor  Storage Price

1 0 (Corei3) 0(256GB) 0($1,500) 1 (Coreis) 1(512GB) 1 ($1,800)
2 1(Corei5) 1(512GB) 0($1,500)  2(Corei7) 2(1TB)  1($1,800)
3 2(Corei7) 2(1TB)  0($1,500)  0(Corei3) 0 (256 GB) 1 ($1,800)
4 1 (Corei5) 0 (256 GB) 1 ($1,800) 2 (Corei7) 1(512GB) 2($2,100)
5 2 (Corei7) 1(512GB) 1($1,800)  0(Corei3) 2(1TB) 2 ($2,100)
6 0 (Corei3) 2(1TB) 1 ($1,800) 1 (Corei5) 0 (256 GB) 2($2,100)
7 2 (Corei7) 0(256GB) 2($2,100)  0(Corei3) 1(512GB) 0 ($1,500)
8 0(Corei3) 1(512GB) 2($2,100) 1 (Coreis) 2(1TB)  0($1,500)
9 1(Corei5) 2(1TB)  2($2,100)  2(Corei7) 0 (256 GB) 0 ($1,500)

Table 4.6: Optimal orthogonal design for laptop choice example

4.5 Limitations of orthogonal designs

As pointed out in Section 3.2, Ngene does not check for undesirable choice tasks when generating
orthogonal designs, even if the user groups generic alternatives together in the script and even if
a preference order is specified for attribute levels. Ngene can only avoid undesirable choice tasks
when generating full factorial, random, and efficient designs, since these designs offer more flexibility.
Undesirable choice tasks are not an issue in Script 4.2 since the attributes levels do not have an
obvious preference order.

Consider the laptop choice example in Script 4.4 where the attribute levels do have a preference
order where higher processor and storage levels and lower price levels are preferred. The resulting
design is shown in Table 4.6, where strictly dominant alternatives are present in Choice tasks 3 and
8 in Table 4.6.

Another limitation is that — due to the strict nature of orthogonality - orthogonal designs do not
allow the flexibility of imposing constraints (prohibitions) on combinations of attribute levels as
discussed in Chapter 6. Therefore, orthogonal designs cannot rule out unrealistic combinations of
attribute levels. While in practice this is often resolved by simply removing choice tasks from the
design that have unrealistic profiles, the resulting design is no longer orthogonal.
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Efficient designs

This chapter describes the generation of efficient designs. Efficient designs assume prior information
about the model to generate experimental designs that capture more (Fisher) information, resulting
in more reliable parameter estimates in model estimation (i.e., smaller standard errors). Compared
to orthogonal designs, efficient designs have greater flexibility; they can avoid strictly dominant
alternatives and allow imposing constraints (prohibitions) on attribute level combinations.

Efficient designs are optimised for a specific model as defined by the model type, utility function
specification (including consideration of alternative-specific constants, interaction effects, nonlinear
effects, dummy or effects coding, etc.), and priors (best guesses for the parameter values). The model
specified during the design phase may differ from the final model that is estimated, but the closer
the ‘estimation’ model resembles the ‘design’ model, the more efficiency is retained.

5.1 Efficient design generation

An efficient design can be generated in Ngene by specifying the property eff, replacing the prop-
erties fact, rand, and orth discussed in Chapters 3 and 4, respectively.

;eff

Property eff can have additional values to indicate for which model type, efficiency criterion, effi-
ciency statistic, and decision rule the design is optimised. If no values are specified, then by default it
assumes the following:

;eff = (mnl,d, fixed, rum)

where mnl refers to the multinomial logit model as the default model type, d refers to the D-error
as the default efficiency criterion, fixed refers to the evaluation of the efficiency criterion at the
single midpoint as the default statistic, and rum refers to the maximisation of random utility as the
default decision rule.
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5.1.1 Model type

Ngene can generate efficient designs for the following model types:

+ mnl — multinomial logit (default)

« rp —random parameter logit

« ec — error component logit

« rpec —random parameter and error component logit

+ rppanel — panel random parameter logit

+ ecpanel — panel error component logit

+ rpecpanel - panel random parameter and error component logit

The multinomial logit model is often considered the workhorse of discrete choice models due to
its widespread application, and it is the default model considered in Ngene. The other model types
listed above are variations of a mixed logit model. Data collected based on design that was optimised
for the multinomial logit model can also be used for estimating mixed logit models (although there
may be a slight loss of efficiency). As mentioned in Section 1.5, generating efficient designs specif-
ically for mixed logit models is not only computationally very demanding, but is also practically
challenging since obtaining reliable priors for random parameters and error components is often
difficult. Therefore, in most cases, it is recommended to optimise for a multinomial logit model, even
if one intends to estimate a mixed logit model during the estimation phase.

In this chapter, we mainly focus on optimising designs for a multinomial logit (mnl) model. The
generation of designs for mixed logit models is discussed in Section 5.7.

5.1.2 Efficiency criteria

Ngene can optimise a design according to several efficiency criteria (see also Section 1.5.1):

o d — Minimise D-error (default)

+ a — Minimise A-error

+ s — Minimise S-error

« wtp - Minimise C-error regarding willingness-to-pay

The D-error is used in almost all studies reported in the literature and is in most cases the best
choice. The D-error is the determinant of the covariance matrix, the A-error is the trace of the co-
variance matrix, and the S-error is the minimum sample size needed to obtain statistically significant
parameter estimates.

In all cases, the lower the value of the efficiency criterion, the more efficient the design. Note that
efficiency values are only comparable between designs generated under the same model assumptions
(model type, utility function specifications, and priors) and are not comparable otherwise. If Ngene
returns an Undefined value, then this means that the D-, A-, or S-error is infinite and the design should
not be used. This may happen when there is an issue regarding the identifiability of the parameters
in the specified utility functions or when constraints imposed on the design create multicollinearity
in the data.

The eff property does not need to contain all four arguments; it uses the default values for the last
arguments if they are omitted. For example, to only change the efficiency criterion while keeping
all other default values, one could use the syntax below to generate an S-efficient design assuming
mnl as model type, fixed as efficiency statistic, and rum as decision rule.

;eff = (mnl,s)
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The sample size estimates are by default based on a two-sided significance level of 0.05, which
corresponds to a t-ratio of 1.96. If a different t-ratio is desired for sample size calculations, for
example, 2.58 for a significance level of 0.01, then the syntax can be adjusted to:

;eff = (mnl,s(2.58))

Although less common, Ngene can also minimise the C-error based on a willingness-to-pay (WTP)
definition in conjunction with the property wtp. For example, in Script 5.2 we could use the fol-
lowing syntax to optimise the design specifically to estimate the willingness-to-pay measures, for
example stor/cost and referred to as mywtp (or any other preferred name). It is also possible to
optimise for multiple or all WTP values simultaneously using wtp = mywtp(proc,stor/cost) or
wtp = mywtp(*/cost), respectively. Please refer to the Syntax Help in the script editor (see Section
2.2).

;eff
;wWtp

(mnl,wtp(mywtp))
mywtp(stor/cost)

The eff property essentially sets the objective function for a mathematical minimisation problem.
Instead of optimising only a single efficiency criterion, it is also possible to optimise for two or more
criteria simultaneously. For example, the syntax below minimises a weighted sum of the D-error
and S-error, whereby the D-error value is multiplied by 50. Appropriate weights for each criterion
depend on their relative size (e.g., D-errors are generally much smaller than S-errors and therefore
this needs to be accounted for in the weights).

;eff = 50%¥(mnl,d) + (mnl,s)

Another option is to add attribute level imbalance as an efficiency criterion. Attribute level imbalance
exists if some attribute levels appear less frequently than other levels across the choice tasks in
the design. This is an issue that occurs mainly when using the modified Fedorov algorithm; see
Section 5.4. Ngene adopts the attribute level imbalance measure proposed by Collins et al. (2014),
which equals 0 if the design is perfectly attribute level balanced, and 1 if the design is completely
unbalanced (i.e., if only a single level appears in the design for each attribute). The syntax example
below simultaneously minimises the D-error and attribute level imbalance assuming a weight of 0.5
for the latter (which again needs to consider the relative size of each efficiency criterion).

;eff = (mnl,d) + 0.5%(imbalance)

5.1.3 Efficiency statistic

Ngene can optimise design efficiency according to the following statistics:

« fixed — Design efficiency based on local prior or mid-point from prior distributions (default)
+ mean — Average design efficiency across draws from prior distributions
« median — Median design efficiency across draws from prior distributions

To understand these statistics, we need to discuss the priors further. Priors are best guesses of the
values of the parameters in the choice model. Such priors are useful when generating efficient designs
to create choice tasks that capture maximum information from agents. Noninformative priors can
be used if minimal or no information is available about the parameter values, whereas informative
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priors can be used when more information is available, see also Table 1.3. Prior information can
come in the form of fixed values, referred to as local priors, or as probability distributions to indicate
uncertainty about the true values of the parameters, referred to as Bayesian priors.

If Bayesian priors are specified, then each design can be evaluated over a large number of prior
values drawn from the specified prior distributions, whereby each draw yields a specific D-error or
other efficiency criterion. When specifying mean as the efficiency statistic, Ngene will optimise the
design based on the average efficiency across all draws from the specified prior distributions. An
alternative statistic is median, which also considers the efficiency of the design across all draws from
the prior distributions but instead optimises for the median value. In most cases, mean is preferred
over median, but median may be a better choice when some prior distributions are very wide' (i.e., a
large standard deviation). When a prior distribution is wide, extremely large values could be drawn
from the distribution, producing outliers when evaluating design efficiency. Such outliers negatively
affect the calculation of the mean, but not the median.

If local priors are specified, then each design is evaluated only once under this fixed set of prior
values, resulting in a single value for the D-error or other efficiency criterion. Therefore, if local
priors are specified, only fixed can be used as efficiency statistic in the eff property. If Bayesian
priors are specified in the script but one prefers to generate an efficient design based on local priors,
then using fixed means that Ngene assumes local priors based on the midpoint of each Bayesian
prior.

As discussed in Section 5.1.2, Ngene allows flexibility in specifying multiple criteria for generating
efficient design using the eff property, for example, the syntax below optimises the design for a
mix of Bayesian and local efficiency statistics.

;eff = 0.5x(mnl,d,mean) + 2*%(mnl,d, fixed)

5.1.4 Decision rule

The following decision rules can be specified in Ngene (see also Section 1.1):

« rum — Random utility maximisation (default)
« rrm — Random regret minimisation

If no decision rule is specified, Ngene assumes that the efficient design is optimised under the
assumption of random utility maximisation.

It is only possible to consider rrm as a decision rule in an unlabelled experiment where all utility
functions are identical. Furthermore, since rum produces the same model as rrm if there are only
two alternatives, using rrm is only useful when considering three or more alternatives.

If desired, designs can be optimised under both decision rules simultaneously by combining two
criteria as shown in the following syntax (see also Section 5.1.2).

;eff = 2%¥(mnl,d, fixed, rum) + (mnl,d,fixed,rrm)

IFor instance, this may happen when priors are taken from a pilot study whereby some parameter estimates are
unreliable as indicated with large standard errors
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design ? labelled car purchase example

;alts = car, no_car

;rows = 16

;eff

;model:

U(car) = con_c
+ eng.dummy * ENGINE[O,1,2,3]
+ col.dummy * COLOUR[OQ,1,2,3]
+ type.dummy * TYPE[0,1,2,3]

? ENGINE: 0(Diesel), 1(Petrol), 2(Hybrid), 3(Electric)

? COLOUR: @(White), 1(Red), 2(Black), 3(Blue)

? TYPE: 0(Sedan), 1(Coupe), 2(Hatchback), 3(Station wagon)
$

Script 5.1: Efficient design

5.2 Specifying noninformative priors

If one is unsure what prior values to use, utilising zero or near-zero noninformative priors is always
a safe strategy. Efficient designs are generally not orthogonal, but under certain conditions” efficient
designs will be orthogonal or near-orthogonal when all attributes are dummy or effects coded and
zero priors are used.

For example, consider again the labelled car purchase example in Script 5.1, which is the same as
Script 4.1, where orth is replaced by eff. The resulting efficient design with 16 choice tasks is
depicted in Figure 5.1. This design is in fact orthogonal since each pair of attribute levels appears
exactly once, which means that one would see exactly 16 orbs when looking at the cube from any
side. Although the design in Figure 4.1 is also orthogonal, the design in Figure 5.1 has a lower
D-error (assuming a multinomial logit model) and is therefore more D-efficient. Therefore, if no
prior information is available (e.g., in a pilot study), instead of generating an orthogonal design
one could consider generating an efficient design assuming zero priors whereby all (qualitative and
quantitative) attributes are dummy or effects coded. Such a design strategy has the benefit that it
allows more flexibility in removing strictly dominant alternatives as well as imposing attribute level
constraints.

In general, efficient designs will not be orthogonal, and this is fine because orthogonality has no
particular benefit in model estimation. If for whatever reason one desires the efficient design to be
orthogonal, both the eff and orth properties can be used in conjunction in the script to generate
an efficient orthogonal design, see for example the syntax below. Note, however, that in this case all
orthogonal design restrictions apply, namely strictly dominant alternatives cannot be avoided and
attribute level constraints cannot be imposed.

;eff = (mnl,d)
;orth = seq

Suppose we would like to generate a D-efficient design in our laptop choice example, see Script 5.2.
In this script, we used estimation coding, which is required for efficient designs, and zero priors
are specified where only the preference order of the attribute levels is indicated. Table 5.1 shows
the generated efficient design with a D-error of 0.002373. This design is attribute level balanced,
and each block also exhibits a high degree of attribute level balance, albeit not perfect because

2These conditions include, but are not limited to, the existence of an orthogonal array for the specified number of
levels for each attribute as well as the specified number of design rows.
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Choice task  Engine

10
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12
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16

Figure 5.1: Efficient design and graphical depiction
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design ? Laptop choice example
;alts = (laptopA, laptopB)

;rows = 12
;block = 2
;eff = (mnl,d)
;model: ? using estimation coding
U(laptopA, laptopB) = proc.dummy[+] * PROCESSOR[@,1,2,3]
+ stor[+] * STORAGE[256,512,1024,2048]
+ cost[-] * PRICE[1200,1500,1800,2100]
? PROCESSOR: @(Core i3), 1(Core i5), 2(Core i7), 3(Core 1i9)
? STORAGE: 256 GB, 512 GB, 1024 GB, 2048 GB
? PRICE: $1200, $1500, $1800, $2100
$
Script 5.2: Efficient design for unlabelled experiment
Laptop A Laptop B
Choice task Block Processor Storage Price Processor Storage Price
1 1 2 512 1200 3 1024 2100
2 1 0 2048 1800 3 256 1500
3 1 1 1024 2100 0 512 1200
4 1 2 256 1500 0 2048 1800
5 1 1 512 1200 2 1024 2100
6 1 3 1024 2100 1 512 1200
7 2 0 1024 1800 2 512 1500
8 2 3 256 1500 2 2048 1800
9 2 3 2048 1200 1 256 2100
10 2 0 256 2100 3 2048 1200
11 2 1 2048 1800 0 256 1500
12 2 2 512 1500 1 1024 1800

Table 5.1: D-efficient design based on noninformative local priors for laptop choice example

only orthogonal designs can achieve that. In contrast to an orthogonal design, this efficient design
has taken the preference order of the attribute levels into account, such that there are no strictly
dominant alternatives across any of the twelve choice tasks.

Although the design in Table 5.1 is fine to use in a choice experiment, it is important to be aware
that efficient designs for unlabelled experiments often contain specific (optimal) comparisons of
levels for quantitative attributes in each choice task instead of a broader range of comparisons seen
in orthogonal designs. This can also be observed for quantitative attributes in a labelled experiment
that have a generic coefficient across multiple alternatives.

For example, each choice task in Table 5.1 makes a comparison between Laptop A and B, whereby
the two outer levels are considered for STORAGE (256 GB versus 2048 GB) and PRICE ($1200 versus
$2100), or the two inner levels (512 GB versus 1024 GB, $1500 versus $1800). This happens especially
with noninformative priors because larger trade-offs (using comparisons of extreme levels) capture
much more (Fisher) information — and hence result in smaller standard errors during model estima-
tion — than small trade-offs when estimating a single coefficient (representing a linear effect) for a
quantitative attribute. For qualitative attributes that are dummy or effects coded, such as PROCESSOR,
such a pattern is generally not observed. Therefore, if the limited set of attribute level comparisons
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Laptop A Laptop B

Choice task Block Processor Storage Price Processor Storage Price
1 1 2 2048 2100 0 1024 1800
2 1 3 512 1500 0 2048 2100
3 1 1 512 1500 2 1024 1200
4 1 2 2048 1800 3 256 1200
5 1 1 512 1200 2 256 1500
6 1 0 256 1800 1 1024 1500
7 2 2 256 1200 3 2048 2100
8 2 1 1024 1800 0 512 1500
9 2 0 1024 1200 1 256 1800
10 2 3 1024 2100 1 2048 1200
11 2 3 256 2100 2 512 1800
12 2 0 2048 1500 3 512 2100

Table 5.2: D-efficient design for laptop choice example when all attributes are dummy coded

in Table 5.1 is deemed undesirable, one can simply apply dummy or effects coding to the relevant
quantitative attributes, see, for example, the syntax below. The resulting design is shown in Table
5.2 and has a larger variety of attribute level comparisons for storage and price attributes. Of course,
this design still allows estimating a single parameter to represent a linear effect; it does not need to
be dummy coded during the model estimation phase.

U(laptopA, laptopB) = proc.dummy[+] * PROCESSOR[Q,1,2,3]
stor.dummy[+] * STORAGE[256,512,1024,2048]
cost.dummy[-] * PRICE[1200,1500,1800,2100]

+ +

5.3 Specifying informative local priors

While specifying noninformative (zero) priors is a safe strategy, more information can be captured
in the data collection when informative priors are specified. However, informative priors must be
carefully chosen since poorly chosen priors can lead to an inefficient experimental design. For exam-
ple, if the true value of a parameter is fx = 0.3 but a prior of 5 was used when generating the efficient
design, then this will have a detrimental effect on the resulting efficiency in the data. Informative
priors should preferably be chosen based on parameter estimates obtained in a pilot study, while
experienced users may be able to adapt priors from the literature or use expert judgement. The
closer the priors are to the true parameter values, the more efficient the design will be. However,
since priors chosen during the design phase are only best guesses, and the parameter estimates after
data collection will inescapably deviate somewhat from the assumed priors.

Suppose that we would like to generate a D-efficient design with informative priors for our laptop
choice experiment. Then we need to modify the specification of the utility function in Script 5.2.
Informative priors can be specified by adding values between square brackets to each parameter as
shown in the example syntax below. Since the parameters in alternative laptopB are the same, the
prior values do not have to be repeated there.

U(laptopA, laptopB) = proc.dummy[-0.7]|-0.5]|-0.1] * PROCESSOR[0,1,2,3]
stor[0.0015] * STORAGE[256,512,1024,2048]
cost[-0.003] * PRICE[1200,1500,1800,2100]

+ +
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Laptop A Laptop B

Choice task Block Processor Storage Price Processor Storage Price
1 1 2 1024 1800 1 512 1200
2 1 2 512 1500 0 2048 1800
3 1 3 512 1500 2 1024 2100
4 1 0 2048 2100 3 256 120
5 1 2 1024 1800 0 256 1500
6 1 0 256 1200 03 1024 2100
7 2 3 2048 2100 1 512 1500
8 2 3 512 1800 2 1024 1500
9 2 1 256 1200 0 2048 1800
10 2 0 256 1200 1 2048 2100
11 2 1 1024 1500 3 512 1800
12 2 1 2048 2100 2 256 1200

Table 5.3: D-efficient design based on informative local priors for laptop choice example

In this syntax, the cost coefficient cost has a prior value of —0.003, so that the expected utility
contribution of a price of $2100 is —0.003 X 2100 = —6.3, while compared to $2100, a price level of
$1800 yields —0.003 X (1800 — 2100) = 0.9 more utility. Similarly, a storage capacity of 2048 GB
yields 0.0015 X (2048 — 256) = 2.688 more utility than a storage capacity of 256 GB. Prior values
for dummy or effects coded coefficients need to be separated using a pipe (| ) symbol. Since the
qualitative attribute PROCESSOR has four levels, whereby the last level (3) is the base level, it is
necessary to specify three priors for the three parameters associated with proc. The first reflects
the prior associated with level 0 (Core i3), the second reflects the prior associated with level 1 (Core
i5), and so on, all relative to base level 3 (Core 19). Processor level 0 (Core i3) yields 0.7 less utility
than processor level 3 (Core i9), while level 1 (Core i5) yields —0.5 — (—0.7) = 0.2 more utility than
a level 0 (Core i3) processor, etc.

Table 5.3 shows the generated design with a D-error of 0.004027, and Table 5.4 provides the corre-
sponding choice probabilities for each choice task based on the provided informative local priors.
Note that comparing this D-error to the D-error of 0.002373 for the design in Table 5.1 is meaningless
because the assumed priors are different.

Changing the order of the attribute levels does not change the behavioural model, but for dummy or
effects-coded attributes, it is important that the priors are listed in an order that is consistent with
the order in which the attribute levels appear. For example, if for attribute PROCESSOR we would like
the base level to be 0 (Core i3) instead of 3 (Core i9), then level 0 should be listed as the last level
for PROCESSOR (see Section 3.7). This is shown in the syntax below, which also requires changing
the order of the priors, namely processor level 1 (Core i5) has again 0.2 more utility than base level
0 (Core i3) and level 3 has again 0.7 more utility than the base level (which has zero utility when
dummy coding is assumed). Note that the order in which the levels of a quantitative attribute without
dummy or effects coding appear is irrelevant; as shown below, changing the level order for STORAGE
and PRICE does not impact the prior specification.

U(laptopA, laptopB) = proc.dummy[0.2]|0.6]0.7] * PROCESSOR[1,2,3,0]
+ stor[0.0015] * STORAGE[512,256,2048,1024]
+

cost[-0.003] * PRICE[2100,1800,1500,1200]
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Choice task  Block Laptop A Laptop B

1 1 0.347057  0.652943
2 1 0.309171  0.690829
3 1 0.756208  0.243792
4 1 0.329157  0.670843
5 1 0.700987  0.299013
6 1 0.700147  0.299853
7 2 0.731844  0.268156
8 2 0.172502  0.827498
9 2 0.334478  0.665522
10 2 0.453138  0.546862
11 2 0.762783  0.237217
12 2 0.398433  0.601567

Table 5.4: Choice probabilities in D-efficient design for laptop choice example

It is very important to use appropriate prior values, preferably from a pilot study. A common mistake
is that a prior is manually set to a value that is relatively too large. For example, a prior value of -0.1
for cost would be too large since this parameter is multiplied by large values for price. This would
yield unrealistically large utility differences between price levels such that the price attribute would
dominate choices in the model, resulting in choice probabilities near 0 and 1 and a relatively high
D-error (larger than 1) that indicates that the resulting design is very inefficient.

Script 5.3 generates a D-efficient design for a labelled mode choice experiment. In the same way,
parameter priors are used. In this case, the label-specific constants con_car and con_bus also require
prior values (which are typically obtained from a pilot study). The resulting D-efficient design is
shown in Table 5.5, and the associated choice probabilities are presented in Table 5.6.

Script 5.3 also introduces a new property on line 6, namely:
;con

When con is added as a property to the script, Ngene will also optimise the design for estimating
all constants. Without this property, the rows and columns representing the constants are omitted
from the covariance matrix before computing the D-error’, in which case the design generation
process does not aim to reduce the standard errors of the constants. Adding con is a good idea when
the objective of the study is to forecast demand or market shares, but is not needed when the main
interest is in determining marginal rates of substitution such as willingness-to-pay.

5.4 Algorithms to generate efficient designs

Several algorithms are available in Ngene to determine an efficient design. The preferred algorithm
can be specified using the alg property:

« alg = swap - column-based swapping algorithm (default)
« alg = mfedorov — row-based modified Federov algorithm
« alg = all - evaluates all possible designs

3But prior values of the constants are always considered when calculating choice probabilities, Fisher information,
and the covariance matrix.
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design ? mode choice example

;alts = car, bus, train
;rows = 18
;block = 3
;eff = (mnl,d)
;con
;model:
U(car) = con_car[0.3] ? Constant for car
+ ctime[-0.05] * CTIME[10,15,20,25] ? car driving time (min)
+ fuel[-0.5] * FUEL[1,2] ? fuel cost ($)
+ toll[-0.6] * TOLL[1,2,3] ? toll cost (%)
/
U(bus) = con_bus[-0.2] ? Constant for bus
+ btime[-0.07] * BTIME[30,35,40,45] ? bus in-vehicle time (min)
+ trans.dummy[-0.4] * TRANSFER[1,0] ? transfer: @ = no (base), 1 = yes
+ wait[-0.12] * WAIT[1,5,10] ? waiting time (min)
+ bseat.dummy[0.3] * SEATING[1,0] ? seat available: @ = no (base), 1 = yes
+ cost[-0.5] * BFAREL1,2,3] ? bus fare ($)
/
U(train) = ttime[-0.06] * TTIME[5,10,15,20] ? train in-vehicle time (min)
+ trans * TRANSFER
+ wait * WAIT
+ tseat.dummy[0.2] * SEATING
+ cost * TFARE[2, 3, 4] ? train fare ($)
$
Script 5.3: Efficient design for labelled experiment
Car Bus Train
Task Block time fuel toll time tran wait seat fare time tran wait seat fare
1 1 10 2 3 30 0 1 1 3 20 1 5 1 2
2 1 20 2 3 45 0 1 0 1 15 0 10 1 4
3 1 15 1 1 40 1 10 0 3 15 1 1 1 2
4 1 25 2 2 30 1 1 1 1 10 0 10 1 4
5 1 10 1 1 40 1 10 0 3 5 0 5 0 2
6 1 25 2 2 30 0 10 1 1 5 1 1 0 4
7 2 20 1 3 45 0 5 1 1 15 1 1 0 4
8 2 25 1 3 35 1 5 0 2 20 0 10 0 2
9 2 10 2 2 40 1 5 1 3 5 0 10 0 2
10 2 20 1 1 35 1 5 0 2 20 0 1 0 3
11 2 15 1 2 45 0 5 1 2 15 1 5 0 3
12 2 25 1 1 40 1 10 0 2 5 0 5 1 3
13 3 15 2 2 30 0 1 0 1 10 1 5 0 4
14 3 20 2 1 35 1 10 0 2 20 0 1 1 3
15 3 25 2 2 45 0 1 1 1 15 1 10 0 3
16 3 10 1 3 35 1 10 1 2 10 0 1 1 4
17 3 20 1 3 35 0 1 0 3 5 1 10 1 2
18 3 15 2 1 40 0 5 1 3 10 1 5 1 3

Table 5.5: D-efficient design based on informative local priors for mode choice example
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Choice task Block Car Bus Train

1 1 0.394020 0.211961 0.394020
2 1 0.435669 0.272294 0.292037
3 1 0.656911 0.006942 0.336147
4 1 0.360171 0.410173  0.229655
5 1 0.642244 0.005286 0.352471
6 1 0.336937 0.194395 0.468668
7 2 0.506667 0.160429 0.332904
8 2 0.474540 0.117020 0.408440
9 2 0.508738 0.030936 0.460325
10 2 0.705000 0.040780 0.254220
11 2 0.730679 0.059978 0.209343
12 2 0.529259 0.015203 0.455538
13 3 0.465090 0.355040 0.179869
14 3 0.562275 0.029429 0.408296
15 3 0.494576  0.294035 0.211389
16 3 0.483912 0.041758 0.474330
17 3 0.380128 0.106752 0.513120
18 3 0.670537 0.042866 0.286597

Table 5.6: Choice probabilities in D-efficient design for mode choice example

More information on column- and row-based algorithms can be found in Section 1.5.1. Each algo-
rithm has several default settings that could be changed in the script, but it is generally not necessary
to deviate from the default settings. For more information on algorithm settings, please refer to the
Syntax help in the script editor.

For choice experiments where the number of possible experimental designs is small enough, one
could evaluate all possible designs by specifying alg = all. For example, if the full factorial has
only 16 rows (e.g., two alternatives, each with two attributes that have two levels) and one would
like to select the most efficient design with 4 rows, then there exist 16 - 15 - 14 - 13 = 65, 536 possible
designs. However, it is clear that in essentially all practical applications, the total number of possible
designs is far too large to make this algorithm a viable choice.

The other two algorithms, swap and mfedorov, solve a complex optimisation problem with the
criterion specified in the eff property serving as the objective function, which is computationally
intensive. If no algorithm is specified in the script to generate an efficient design, then by default alg
= swap is assumed, which randomises attribute levels in each column and randomly swaps levels
within each column. The main benefit of the swapping algorithm is that it maintains attribute level
balance when changing levels within an attribute column (see Section 1.5 and Figure 1.5(a)). For
this reason, this is often the best algorithm for generating an efficient design.

Sometimes, the default swapping algorithm will struggle to find a design. This may happen when
there is a high occurrence of strictly dominant alternatives (often when only a small number of
attributes and attribute levels are specified), or when a large number of constraints are imposed (see
Chapter 6. For example, consider Script 5.2 and suppose that the number of rows is doubled from 12
to 24. Running this script will not produce a design because the default swapping algorithm will not
be able to generate 24 choice tasks without any strictly dominant alternatives. A message similar to
the one below would be shown in the log screen:
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“A wvalid initial random design could not be generated after approximately 10 seconds. In
this time, of the 543999 attempts made, there were 0 row repetitions, 17900 alternative
repetitions, and 526099 cases of dominance. There are a number of possible causes for
this, including the specification of too many constraints, not having enough attributes or
attribute levels for the number of rows required, and the use of too many scenario attributes.
A design may yet be found, and the search will continue for 10 minutes. Alternatively, you
can stop the run and alter the syntax.”

If the default swapping algorithm cannot locate a design, then one can switch to the modified Fedorov
algorithm, which can be invoked by adding the following syntax to the script:

;alg = mfedorov

The modified Federov algorithm is a row-based algorithm that first creates a candidate set and then
composes a design by selecting the choice tasks from this candidate set. For each row in the design,
the algorithm iteratively replaces the row with each choice task in the candidate set (except for
those that are already in the design) and evaluates the design efficiency. The default candidate set
consists of 2,000 randomly generated choice tasks, which is typically sufficient for most studies. A
larger candidate set size will make the algorithm slower while often only marginally improving the
efficiency of the generated design; therefore, a candidate set with more than 5,000 choice tasks is
generally not recommended. If one wishes to change the candidate set size, for example, to 3,000
choice tasks, then the following syntax can be used. The maximum candidate set size in Ngene is
10,000 choice tasks. If Ngene is not able to generate a candidate set size of the desired size, it will
(in most cases) automatically reduce the candidate set size and report this in the log screen.

;alg = mfedorov(candidates = 3000)

Script 5.4 generates a design for the laptop choice experiment using the modified Fedorov algorithm.
Table 5.7 shows the resulting design after about 25,000 design evaluations. This design has a D-error
of 0.003722, which is lower than the D-error of 0.004027 for the design in Table 5.3. However, this
increase in efficiency comes at the cost of reduced attribute level balance.

Observe that for qualitative attribute PROCESSOR its four levels each appear six times across both
alternatives, although there are some differences within each alternative (which is usually fine).
Attributes that are dummy or effects coded generally show a high degree of attribute level balance
because the design will not be efficient if one or more levels are rarely present because this would
mean that the parameter associated with that level cannot be estimated reliably. However, for quan-
titative attributes STORAGE and PRICE mostly the two extreme levels appear (256 GB and 2048 GB,
$1200 and $2100), while the inner levels are under-represented (512 GB and 1024 GB, $1500 and
$1800). As also mentioned in Section 5.2, large trade-offs between extreme levels provide more
(Fisher) information than small trade-offs with inner levels when estimating a linear effect. Hence,
when using the modified Fedorov algorithm, the quantitative attributes will often exhibit a low
degree of attribute level balance.

Three options exist to achieve a better degree of attribute level balance when using the modified
Federov algorithm. First, one can use dummy or effects coding for quantitative attributes; see also
Section 5.2. While this is often fine when using noninformative (zero priors), with informative
priors one would preferably stay closer to the utility function specification that will be used in the
model estimation phase. Secondly, one can add (imbalance) as an optimisation criterion in the eff
property, as discussed in Section 5.1.2, although this will not guarantee that all attributes exhibit
an acceptable degree of level balance.
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design ? Laptop choice example

;alts = (laptopA, laptopB)

;rows = 12

;block = 2

;eff = (mnl,d)

;alg = mfedorov

;model:

U(laptopA, laptopB) = proc.dummy[-0.7]|-0.5|-0.1] * PROCESSOR[®,1,2,3]

+ stor[0.0015] * STORAGE[256,512,1024,2048]
+ cost[-0.003] * PRICE[1200,1500,1800,2100]

? PROCESSOR: @(Core i3), 1(Core i5), 2(Core i7), 3(Core 1i9)

? STORAGE: 256 GB, 512 GB, 1024 GB, 2048 GB

? PRICE: $1200, $1500, $1800, $2100

$

Script 5.4: Using modified Fedorov algorithm
Laptop A Laptop B
Choice task Block Processor Storage Price Processor Storage Price

1 1 0 256 1200 2 2048 2100
2 1 1 2048 2100 0 256 1200
3 1 1 2048 2100 3 512 1200
4 1 3 2048 2100 0 256 1200
5 1 3 256 1200 0 2048 2100
6 1 3 256 1200 2 2048 2100
7 2 2 2048 2100 1 256 1200
8 2 2 1024 1200 3 2048 2100
9 2 1 2048 2100 2 256 1800
10 2 1 256 1500 0 2048 1800
11 2 3 1024 2100 1 256 1200
12 2 2 256 1200 0 2048 1800

Table 5.7: D-efficient design using the modified Fedorov algorithm for laptop choice example
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Laptop A Laptop B

Choice task Block Processor Storage Price Processor Storage Price
1 1 1 512 1500 0 2048 1800
2 1 1 256 1500 2 1024 1800
3 1 2 256 1200 1 1024 1800
4 1 0 2048 1800 2 256 1500
5 1 3 2048 2100 2 512 1500
6 1 0 1024 1800 3 256 1200
7 2 3 256 1500 2 2048 2100
8 2 2 1024 2100 0 512 1500
9 2 1 2048 1800 3 256 1500
10 2 0 512 1800 3 256 1500
11 2 1 2048 1800 0 512 1200
12 2 1 1024 1200 3 2048 2100

Table 5.8: D-efficient design using modified Fedorov algorithm with balanced attributes

A third option is to specify the frequency with which each attribute level must occur across all choice
tasks by defining these frequencies in the utility functions in the model property. For example, in
the utility function specification in Script 5.4 we can add attribute level frequency constraints for
the STORAGE attribute. In the following syntax, we added (3,3,3,3) directly after the levels for this
attribute, which indicates that each of the 4 levels should appear exactly 3 times in the 12 rows (to
create perfect attribute level balance).

U(laptopA, laptopB)
= proc.dummy[-0.7|-0.5|-0.1] * PROCESSOR[O,1,2,3]
+ stor[0.0015] * STORAGE[256,512,1024,2048](3,3,3,3)
+ cost[-0.003] * PRICE[1200,1500,1800,2100]

One could also add (3,3,3,3) directly after the PRICE levels in the utility function. A row-based
algorithm, like the modified Fedorov algorithm, may not be able to find designs if too many strict
attribute level frequency constraints are imposed. In addition, any imposed attribute level frequency
constraints will make the generated design less efficient. Therefore, it is often best to somewhat
relax these constraints by specifying lower and upper bounds on how often each attribute level
should appear. For example, in the syntax below we added (2-4,2-4,2-4,2-4) to require that each
storage capacity level appears no less than twice across the 12 rows and no more than 4 times. For
the price attribute, similar attribute level frequency constraints are added, whereby in this example
we require the outer levels to appear exactly twice and each middle level in needs to appear at least
3 times across the 12 rows. Table 5.8 presents an efficient design that satisfies these attribute level
frequency constraints.

U(laptopA, laptopB)
= proc.dummy[-0.7]|-0.5]|-0.1] * PROCESSOR[0,1,2,3]
+ stor[0.0015] * STORAGE[256,512,1024,2048]1(2-4,2-4,2-4,2-4)
+ cost[-0.003] * PRICE[1200,1500,1800,2100](2,3-12,3-12,2)

The swapping and modified Fedorov algorithms use a randomisation process; when one runs the
same script again, a different design (with similar efficiency) will be found. These algorithms will
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design ? Laptop choice example
;alts = (laptopA, laptopB)
;rows = 12
;block = 2
;eff = (mnl,d,mean)
;bdraws = sobol(300)
;model:
U(laptopA, laptopB)
= proc.dummy[(u,-1,-0.6)|(u,-0.6,-0.4)|(u,-0.4,0)] * PROCESSOR[0,1,2,3]

+ stor[(n,0.0015,0.0005)] * STORAGE[256,512,1024,2048]
+ cost[(n,-0.003,0.001)] * PRICE[1200,1500,1800,2100]
? PROCESSOR: @(Core i3), 1(Core i5), 2(Core i7), 3(Core i9)
? STORAGE: 256 GB, 512 GB, 1024 GB, 2048 GB
? PRICE: $1200, $1500, $1800, $2100

$

Script 5.5: Assuming Bayesian priors

automatically terminate when no better design has been found after 5,000 consecutive design
evaluations, but will ultimately and time out after 10 hours. To avoid unnecessary long run times, it
is advised to stop the design search manually if the search graph indicates that new designs only
marginally improve efficiency; see also Section 2.3. These termination criteria can be modified
within the script. In the first example syntax below, the swapping algorithm runs for a total of
50,000 iterations (design evaluations), while in the second example, the modified Fedorov algorithm
terminates after 10 minutes, or after no better design was found during 10,000 consecutive iterations
(design evaluations), whichever comes first.

;alg = swap(stop=total (50000 iterations))

;alg = mfedorov(stop=total(10 mins), stop=noimprov(10000))

Both the swapping and the modified Fedorov algorithm are computationally intensive, and some-
times it may be useful to give it an initial design for a ‘hot start’ of the algorithm. For example,
suppose that one previously generated a design in Ngene or imported a design (see Section 2.5)
named ‘My Design’ in the same experiment folder. Then it is possible to use this design as a starting
point in the algorithm by adding the syntax below to the script.

;start = My Design

5.5 Specifying Bayesian priors

A Bayesian prior accounts for the fact that there is uncertainty about the true parameter value.
Therefore, a Bayesian prior is defined by a random distribution; see Section 1.5.1. To explain how to
use Bayesian priors in Ngene, consider Script 5.5. This script generates a Bayesian efficient design
for the laptop choice experiment. In this script, we consider the D-error as efficiency criterion and
the multinomial logit as model type of interest, but different efficiency criteria or model types could
of course be specified.

In lines 8-10 of Script 5.5 Bayesian priors have been specified for the parameters. Ngene accepts
two types of Bayesian priors, specified in the following format (with parentheses):

4To avoid premature termination in the modified Fedorov algorithm, this termination criterion is adjusted to twice
the candidate set if the candidate set size is larger than 2,500 rows.
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« (n,estim,se) — Normally distributed prior based on estimate estim and standard error se
 (u,lower,upper) — Uniformly distributed prior based on estimated range [ lower ,upper ]

A normal distribution is often useful when parameter estimates from a pilot study are available. Even
if parameter estimates are not statistically significant, they often still provide the best guess available,
and standard errors can be used to indicate the level of accuracy (precision) of these estimates. For
parameter stor in Script 5.5 a normally distributed Bayesian prior based on a parameter estimate of
0.0015 and a standard error of 0.0005 is assumed in line 9, while in line 10 a normal distribution with
estimate —0.003 and standard error 0.001 is assumed for the prior of the cost parameter, indicating
that the most likely prior values are 0.0015 and —0.003, but there is uncertainty about these values.

A uniform distribution is useful when one would like to specify a range of prior values. By using a
lower (upper) bound of 0 one can indicate that the parameter is expected to have a positive (negative)
value. In Script 5.5 uniformly distributed Bayesian priors are specified for the proc parameters, e.g.,
the prior for the dummy parameter associated with level 0 (Core i3) is believed to have a value
between —1 and —0.6, while the prior for level 2 (Core i7) is assumed to be between —0.4 and 0. The
range of the uniform distribution indicates the level of uncertainty about the prior value.

In line 5 of Script 5.5 we indicated in the eff property that we would like to generate a Bayesian
efficient design by minimising the average (mean) D-error. It is important to specify mean or median
as the third argument in the eff property if one wants to generate a Bayesian efficient design. If
only eff or eff = (mnl,d) is specified, then this would default to eff = (mnl,d,fixed), which
would generate a locally efficient design, despite the fact that Bayesian priors are specified in the
script.

In line 6 we added the property bdraws to specify which type of draw and how many draws we
would like to take from each of these distributions for the Bayesian priors. In the script, we chose
300 draws using Sobol sequences. The following types of draws are available in Ngene for Bayesian
priors, showing default values between parentheses:

+ bdraws = random(200) - 200 pseudo-random draws

halton(200) — 200 quasi-random draws using Halton sequences (default)

+ bdraws = sobol(200) — 200 quasi-random draws using Sobol sequences

+ bdraws = mlhs(200) - 200 quasi-random draws using modified latin hybercube sampling
« bdraws = gauss(3) — Gaussian quadrature using 3 abscissas for each Bayesian prior

e bdraws

If bdraws is not specified in the script, bdraws = halton(200) is assumed by default. Quasi-random
draws (halton, sobol, and mlhs) are ‘smarter’ draws than pseudo-random draws (random) and
result in the same accurate calculations of Bayesian efficiency with a smaller number of draws.
For this reason, quasi-random draws are generally preferred over pseudo-random draws. Although
Halton draws are typically good when no more than five Bayesian priors are specified, its accuracy
deteriorates for larger numbers of Bayesian priors, and either Sobol sequences or MLHS would be
recommended in such cases. Another type of draw with superior accuracy is Gaussian quadrature
(gauss). Gaussian quadrature differs from pseudo/quasi-random draws, namely it first determines
abscissas for each prior distribution, which are specific points on the distribution, and assigns them a
weight. Then it creates draws by creating all possible combinations (i.e., the full factorial) of abscissas
across all prior distributions. The average Bayesian efficiency is then calculated as a weighted average
across all draws. Note that median cannot be used in combination with Gaussian quadrature due to
the nature of this type of draw.

If the number of draws is not specified, Ngene defaults to 200 pseudo- or quasi-random draws or 3
abscissas for Gaussian quadrature. The required number of draws to compute Bayesian efficiency
with sufficient accuracy increases with the number of Bayesian priors. More draws means more
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accurate Bayesian efficiency calculations but increased computation time.” While a few hundred
draws may suffice with five Bayesian priors, thousands of draws may be required with ten or more
Bayesian priors. The maximum number of draws that can be specified is 10,000 draws. To avoid
long run times or inaccurate Bayesian efficiency calculations (which may generate designs that are
actually not that efficient), it is usually recommended to use no more than ten Bayesian priors and
use local priors for parameters attached to attributes of lesser relative importance (as measured by
their contribution to utility).

One should be careful when using Gaussian quadrature since the total number of draws is only
indirectly specified via the number of abscissas. If we used bdraws = gauss(3) in Script 5.5, which
has five Bayesian priors, then the total number of draws would be 3-3-3-3-3 = 3° = 243 draws. The
number of draws exponentially increases with the number of abscissas, so, for example, using bdraws
= gauss(5) in Script 5.5 would increase the number of draws to 5° = 3, 125. If one specifies Bayesian
priors for each of the 12 parameters (including constants) in Script 5.3, then bdraws = gauss(3)
would already amount to a total of 312 = 531, 441 draws, which would far exceed the maximum of
10,000 draws. It is possible to specify a different number of abscissas for each Bayesian prior.® For
example, bdraws = gauss(2,2,2,4,4) in Script 5.5 would result in 2-2-2-4 -4 = 2342 = 128 draws,
whereby two abscissas are used for the first three Bayesian priors listed in the script, namely those
associated with parameter proc, and four abscissas are used for the prior distributions of stor and
cost.

In the Result tab of the project screen one can view various design efficiency measures, such as
average D-error across the draws, minimum and maximum D-error across the draws, and even the
D-error for each of the draws. It also reports the fixed D-error by assuming the midpoint of each prior
distribution as a local prior (e.g., in Script 5.5 the mid-point values are proc.dummy[-0.8|-0.5|-0.2],
stor[0.0015] and cost[-0.003]).

Note that the draw types random and mlhs rely on randomisation and will each time produce
different draws. To fix the draws, one can specify a random seed for Bayesian draws using the
property bseed. For example, bseed = 12345 uses the number 12345 as a seed to generate random
numbers. Adding this property to the script uses the same Bayesian draws each time the script is
run, which is especially useful to obtain the same result in design evaluation; see Section 5.8.

5.6 Specifying functions of attributes

In some cases, one may want to use functions of one or more attributes in the utility function
specifications. Ngene supports such functions by specifying the levels of an attribute using fen(...),
but only in combination with the default swapping algorithm. Currently only simple linear functions
are supported in Ngene, therefore only plus (+), minus (-), attribute names and constants are
allowed.

Script 5.6 shows an example in which the level of the attribute prLate is a function of the levels
of attributes prEarly and prOntime. Note that attributes need to be referenced by their combined
alternative and attribute name, e.g. optA.prEarly. This function ensures that the sum of attributes
prEarly, prOntime and prLate,which represent probabilities, is always equal to 1. Because prlLate is
alinear combination of prEarly on prOntime, it can only appear as an interaction effect as otherwise
there would exist multicollinearity.

>For instance, calculating design efficiency assuming Bayesian priors with 1,000 draws takes 1,000 times longer than
calculating design efficiency assuming local priors.

®For instance, using more abscissas for wide prior distributions or ones associated with more important attributes and
less abscissas for other prior distributions.
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design ? Route choice example
;alts = (optA, optB)

;rows = 12

;eff = (mnl,d)

;model:

U(optA, optB)
= b1[@0.5] * prEarly[0.2,0.4] * Early[10,12,14]
+ b2[0.2] * prOntime[0.5,0.3] * Ontime[20,22,24]
+ b3[-0.4] * prLate[fcn(1 - optA.prEarly - optA.prOntime)] * Late[25,27,29]

? prEarly: 0.2(20%), 0.4(40%)

? prOntime: 0.5(50%), 0.3(30%)

? prLate: 1-0.4-0.5(10%), 1-0.2-0.5(30%), 1-0.4-0.3(30%), 1-0.2-0.3(50%)

? Early: 10 min, 12 min, 14 min

? Ontime: 20 min, 22 min, 24 min

? Late: 25 min, 27 min, 29 min

$

Script 5.6: Design with functions of attributes

5.7 Designs for mixed logit models

Ngene can generate efficient designs for the model types mentioned in Section 5.1.1. Except for the
multinomial logit (mn1) model, all other model types are variants of the mixed logit model whereby
random parameters and/or random error components can be considered.

Ngene can optimise for mixed logit models where distributions of random parameters and/or error
components are specified as follows (without parentheses):

« n,mu,sigma — Normally distributed parameter with mean mu and standard deviation sigma
o u,min,max — Uniformly distributed parameter with minimum min and maximum max

Similarly to bdraws defined in Section 5.5, rdraws is used to specify the type and number of draws
for random parameters or error components, and has the following options (default values shown
between parentheses):

o rdraws = random(200) - 200 pseudo-random draws
« rdraws = halton(200) - 200 quasi-random draws using Halton sequences (default)

« rdraws = sobol(200) — 200 quasi-random draws using Sobol sequences
+ rdraws = mlhs(200) - 200 quasi-random draws using modified latin hybercube sampling
« rdraws = gauss(3) — Gaussian quadrature using 3 abscissas for each Bayesian prior

Model types rppanel, ecpanel, rpecpanel account for the panel nature of the data when each agent
receives multiple choice tasks, while model types rp, ec and rpec are only appropriate when each
agent is given only a single choice task from the experimental design. For panel mixed logit models —
rppanel, ecpanel, and rpecpanel — the covariance matrix can only be approximated via a simulated
sample of agents. Such a sample is simulated in Ngene by repeating the entire design with different
draws from the specified random parameter distributions.” The default size of the simulated sample
(i.e., the number of design repetitions) is 200, but this can be specified via the rep property. The
larger this simulated sample, the more accurate the covariance matrix and efficiency calculation will
be, but the more computation time is required.

;rep = 500

’In Ngene currently any blocking is ignored, i.e., it is implicitly assumed that each simulated agent is given all choice
tasks.
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design ? Laptop choice example
;alts = (laptopA, laptopB)
;rows = 12
;block = 2
;eff = (rppanel,d)
;rdraws = gauss(3)
;rep = 500
;model:
U(laptopA, laptopB)
= proc.dummy[n,-0.7,0.4|n,-0.5,0.3|n,-0.1,0.2] * PROCESSOR[O,1,2,3]

+ stor[n,0.0015,0.0007] * STORAGE[256,512,1024,2048]
+ cost[n,-0.003,0.0012] * PRICE[1200,1500,1800,2100]
? PROCESSOR: @(Core i3), 1(Core i5), 2(Core i7), 3(Core i9)
? STORAGE: 256 GB, 512 GB, 1024 GB, 2048 GB
? PRICE: $1200, $1500, $1800, $2100

$

Script 5.7: Design for panel random parameter logit model

The seed for draw types random and mlhs can be fixed by using property rseed in the same way
as bseed, see Section 5.5.

5.7.1 Random parameter models

Script 5.7 generates a D-efficient design for the laptop choice experiment that is optimised to estimate
a panel mixed logit model with random parameters, as indicated by eff = (rppanel,d) on line 5.
The utility function specification on lines 9-11 has been adapted to indicate that all parameters are
now randomly distributed. In addition, properties rdraws and rep were specified in lines 6 and 7,
respectively.

Random parameters expresses preference heterogeneity of agents, which should not be confused
with Bayesian priors that express uncertainty of the analyst about the true parameter values. In a
mixed logit model, distributional parameters mu, sigma, min and max are estimated. In Script 5.7,
there are five random parameters, and for each parameter a mean and a standard deviation must be
estimated. Therefore, the covariance matrix associated with this model has ten rows and columns
representing these distributional parameters, whereby the standard deviation parameters on the
Results screen in Ngene are indicated with the extension ‘std dev..

Each of the distributional parameters can have a local or Bayesian prior when generating an ef-
ficient design. For example, the parameter associated with processor level 0 (Core i3) follows a
normal distribution described by n,-0.7,0.4. This means that the local prior for the mean is —0.7
and the local prior for the standard deviation is 0.4. Similarly, stor[n,0.0015,0.0007] as specified
in the utility function indicates a normally distributed random parameter with local priors. It is
possible to specify Bayesian priors for each distributional parameter, for example, one could specify
stor[n, (n,0.0015,0.0005), (u,0,0.001)] whereby the mean has a normally distributed Bayesian
prior with an estimate of 0.0015 and a standard error of 0.0005, and the standard deviation has a
uniformly distributed Bayesian prior with a lower bound of 0 (since a standard deviation cannot
be negative) and an upper bound of 0.001. However, combining random parameters with Bayesian
priors is computationally feasible only for models with a very small number of random parameters
and Bayesian priors.

In line 6 of Script 5.7 we chose Gaussian quadrature with 3 abscissas, and since there are five random
parameters, this means a total of 3° = 243 draws. Together with rep = 500, this means that this
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design ? mode choice example
;alts = car, bus, train
;rows = 18

;block = 3

;eff = (ecpanel,d)

;rdraws = gauss(5)

;rep = 1000

;con
;model:
U(car)

con_car[0.3] Constant for car

?
+ ctime[-0.05] * CTIME[10,15,20,25] ? car driving time (min)
+ fuel[-0.5] * FUEL[1,2] ? fuel cost (%)
+ toll[-0.6] * TOLL[1,2,3] ? toll cost ($)
+ ec_road[ec,0.5]
/
U(bus) = con_bus[-0.2] ? Constant for bus
+ btime[-0.07] * BTIME[30,35,40,45] ? bus in-vehicle time (min)
+ trans.dummy[-0.4] * TRANSFER[1,0] ? transfer: @ = no (base), 1 = yes
+ wait[-0.12] * WAIT[1,5,10] ? waiting time (min)
+ bseat.dummy[0.3] * SEATING[1,0] ? seat available: @ = no (base), 1 = yes
+ cost[-0.5] * BFARE[1,2,3] ? bus fare ($)
+ ec_road
+ ec_ptl[ec,0.3]
/
U(train) = ttime[-0.06] * TTIME[5,10,15,20] ? train in-vehicle time (min)
+ trans * TRANSFER
+ wait * WAIT
+ tseat.dummy[0.2] * SEATING
+ cost * TFARE[2,3,4] ? train fare ($)
+ ec_pt
$

Script 5.8: Design for panel error component logit model

script will run 243 x 500 = 121, 500 times slower than a script that generates an efficient design for
a multinomial logit model. Given this very large increase in computational complexity, one is often
better off optimising for a multinomial logit model rather than for a mixed logit model.

5.7.2 Error component models

Error components are additional error terms in a utility function that expresses differences in error
variance between labelled alternatives. Error components can also be nested to indicate similarities
in error variance between alternatives. An error component is essentially a normally distributed
constant with zero mean, whereby only the standard deviation is estimated, and can be defined in
Ngene as follows (without parentheses):

+ ec,sigma — Error component with standard deviation sigma

Script 5.8 generates a D-efficient design for the mode choice experiment to estimate a panel mixed
logit model with error components, as indicated by eff = (ecpanel,d) on line 5. Two error com-
ponents are added, namely ec_road on lines 14 and 22 of the utility functions of the road-based
alternatives (car and bus), and ec_pt in both public transport modes (bus and train) on lines 23 and
30. Their standard deviations have local priors of 0.5 and 0.3, respectively.
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To take draws from the two error components, Script 5.8 uses Gaussian quadrature with 5 abscissas,
see line 6, which means case 5 X 5 = 25 draws in total. In conjunction with a simulated sample of
1,000 agents (see rep = 1000 on line 7), this script will run 25 X 1000 = 25, 000 times slower than
when generating a design for a multinomial logit model.

Random parameters can be combined with error components in the utility function specifications.
When doing so, one should specify either rpecpanel or rpec as model type.

5.8 Evaluating existing designs

If one is interested in evaluating the efficiency of an existing experimental design rather than gen-
erating a new design, the eval property can be used. Consider a design named ‘My Design’ that
was imported (see Section 2.5) or that was previously generated under different assumptions of the
utility functions, model type, priors, or efficiency criterion.

To evaluate the design, create a new design in the same experiment folder and write a script with
the desired utility functions, model type, priors,and efficiency criterion, and add the syntax below
to the script. Note that the alg property should be removed if it is specified in the script.

;eval = My Design

Evaluation of a design is also useful in the case that one first generates a design under the assump-
tion of a multinomial logit model and then would like to evaluate the efficiency of this design for
estimating a mixed logit model (see Section 5.7).

When evaluating Bayesian efficiency of a design, or design efficiency for estimating a mixed logit
model,
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Constrained choice tasks

This chapter describes how to impose constraints on certain attribute level combinations for each
choice task in an experimental design. Such constraints are also referred to as prohibitions. They
are often needed to make choice tasks, or profiles within a choice task, more realistic. Constraints
can also be used to create scenario variables (which have the same value across all alternatives), to
fix attribute levels in status quo alternatives, to create attribute level overlap, or for other purposes.

The type of constraints that can be imposed depends on the design type and the algorithm used to
generate the design. It should be noted that constraints cannot be considered for orthogonal designs
due to the strict nature of orthogonality.

6.1 Strategies for applying constraints

Constraints should only be applied if they are needed (e.g., for realism purposes), since imposing any
constraints will make the design less efficient and more difficult to generate. Ngene supports two
types of constraints, namely conditional constraints and check constraints. Conditional constraints
can only be used when generating an efficient design using the default swapping algorithm, while
check constraints can only be used when generating an efficient design using the modified Fedorov
algorithm. Check constraints can also be applied to generate a constrained full factorial design using
the fact property or a constrained random fractional factorial design using the rand property.

In most cases, the default swapping algorithm is preferred to generate an efficient design because
it aims to satisfy attribute level balance, in contrast to the modified Fedorov algorithm. However,
finding designs that satisfy all conditional constraints in a row-based algorithm (such as the swapping
algorithm) is much harder than finding designs that satisfy all check constraints in a row-based
algorithm (like the modified Fedorov algorithm). Therefore, while using the swapping algorithm in
combination with conditional constraints is usually a good starting point, one may need to switch
to the modified Fedorov algorithm in combination with check constraints in case Ngene is not able
to locate a feasible design. In almost all cases, one can rewrite conditional constraints into check
constraints (and vice versa) that apply the same prohibitions.

It is important to avoid constraints that introduce multicollinearity in the data, as this will result in
an experimental design that cannot be used to estimate all parameters in the model. If this happens,
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this is easily detected because the resulting design will have very poor efficiency, e.g., a very large or
undefined (infinite) D-error. It is recommended to first generate a design without any constraints and
then gradually add constraints, as it is easier to detect issues caused by constraints when specified
one at the time.

6.2 Logical expressions

Constraints can be formulated in Ngene using logical expressions. Each logical expression can be True
or False. In a logical expression, one can refer to a specific attribute of an alternative by first stating
the alternative name, followed by a dot ( . ) and then the attribute name. For example, laptopA.PRICE
refers to the PRICE attribute of the alternative laptopA.

Logical expressions can use the following mathematical symbols: = (equal to), > (greater than), <
(smaller than), >= (greater than or equal to), <= (smaller than or equal to), <> (not equal to). In
addition, the following arithmetic operators are supported: + (addition), - (subtraction).

Some examples of logical expressions:

« laptopA.PRICE <> 1200
o laptopA.PRICE > laptopB.PRICE
e laptopA.PRICE + laptopB.PRICE <= 3000

Although * (multiplication) and / (division) are currently not supported, it is often possible to
rewrite the logical expression in terms of additions and/or subtractions. For example, 1.5 * laptop.PRICE
> 1500 can simply be rewritten as laptop.PRICE + laptop.PRICE + laptop.PRICE > 3000.

Compounded logical expressions can be made using Boolean logical operators: and, or. For example:

e laptopA.PRICE > 1200 and laptopA.PROCESSOR <= laptopB.PROCESSOR
+ laptopA.PRICE > 1500 and laptopB.PRICE = 1800 and laptopB.STORAGE = 1
e laptopA.PRICE = 1200 or laptopA.PRICE = 1500

6.3 Conditional constraints

Conditional constraints are if-then rules using two logical expressions, namely one logical expression
for the ‘if” part of the constraint and another logical expression for the ‘then’ part of the constraint.
These constraints can be used when generating an efficient design, but only in combination with the
default swapping algorithm. When conditional constraints are specified, Ngene will try to maintain
attribute level balance, but this may not always be possible. Due to the nature of the column-based
swapping algorithm, Ngene may not always be able to find a design that satisfies the conditional
constraints, especially if many such constraints are specified. If one needs to impose many con-
straints, a better option may be to use check constraints in combination with the modified Fedorov
algorithm; see Section 6.4.

In Ngene, conditional constraints are specified by the optional property cond. All constraints are
specified in an environment that starts with a colon (:), similar to the model environment. In
the cond environment, each property value is a conditional constraint represented by an if-then
statement, separated by a comma (, ). No commas should appear after the last if-then statement
(Ngene generates an error otherwise). Each conditional constraint starts with if and is followed by
two logical expressions between parentheses, as shown in the format below, where logical expression
1 relates to the ‘if” part and logical expression 2 relates to the ‘then’ part.
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design ? Laptop choice example
;alts = (laptopA, laptopB)

;rows = 12
;block = 2
;eff = (mnl,d)
;cond:

? Laptops with Core i7/i9 processors cannot have a low price
if(laptopA.PROCESSOR >= 2, laptopA.PRICE >= 1500),
if(laptopB.PROCESSOR >= 2, laptopB.PRICE >= 1500),
? Laptops with Core i3/i5 processors cannot have a high price
if(laptopA.PROCESSOR <= 1, laptopA.PRICE <= 1800),
if(laptopB.PROCESSOR <= 1, laptopB.PRICE <= 1800)

;model:
U(laptopA, laptopB) = proc.dummy[-0.7]|-0.5|-0.1] * PROCESSOR[®,1,2,3]
+ stor[0.0015] * STORAGE[256,512,1024,2048]
+ cost[-0.003] * PRICE[1200,1500,1800,2100]
? PROCESSOR: @(Core i3), 1(Core i5), 2(Core i7), 3(Core i9)
? STORAGE: 256 GB, 512 GB, 1024 GB, 2048 GB
? PRICE: $1200, $1500, $1800, $2100
$
Script 6.1: Conditional constraints
;cond:

if( logical expression 1, logical expression 2), ...

Ngene evaluates each choice task against all conditional constraints. A choice task passes a condi-
tional constraint if both the logical expression 1 and the logical expression 2 are true, or if the logical
expression 1 is False (i.e,, it is irrelevant). If a choice task passes all conditional constraints, it is
accepted.

Consider again the laptop choice experiment, see Script 6.1. It may be unrealistic that a laptop with
a fast processor is cheap and that a laptop with a slow processor is expensive. Therefore, to make
laptop profiles more realistic, one could impose the following two constraints for a laptop:

1. If PROCESSOR > 2, then PRICE > 1500
2. If PROCESSOR < 1, then PRICE < 1800

Lines 8-9 in this script define Constraint 1 and lines 11-12 define Constraint 2. Note that Constraints
1 and 2 need to be applied to both alternatives, therefore, in total four conditional constraints need
to be specified in the script.

There are often many ways to specify the same constraint. For example, we could replace the
conditional constraint on line 8 in Script 6.1 with any of the following to yield the same result:

if(laptopA.PROCESSOR > 1, laptopA.PRICE <> 1200)
if(laptopA.PROCESSOR = 2 or laptopA.PROCESSOR = 3, laptopA.PRICE > 1200)

if(laptopA.PROCESSOR

[2,3], laptopA.PRICE = [1500,1800,2100])

The last constraint uses a shortcut that only works with conditional constraints: X = [1,2,...] is
equivalentto X = 1 or X = 2 or ..., where X is an attribute of an alternative.
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Laptop A Laptop B

Choice task Block Processor Storage Price Processor Storage Price
1 1 0 2048 1800 2 512 1500
2 1 1 512 1500 2 2048 1800
3 1 3 256 1500 2 2048 2100
4 1 2 512 1800 1 1024 1500
5 1 3 2048 2100 1 1024 1200
6 1 0 256 1200 1 512 1800
7 2 1 2048 1800 0 512 1200
8 2 0 1024 1500 3 256 1800
9 2 2 1024 2100 3 256 1500
10 2 1 256 1200 3 2048 2100
11 2 3 1024 1800 0 256 1500
12 2 2 512 1500 0 1024 1800

Table 6.1: D-efficient design based with conditional constraints for laptop choice example

The efficient design resulting is shown in Table 6.1, whereby laptops with processor levels 0 and 1
never have a price of $2100, and laptops with processor levels 2 or 3 never have a price of $1200.

6.4 Check constraints

Check constraints are a set of rules that use logical expressions. These constraints can be used when
generating an efficient design, but only in combination with the modified Fedorov algorithm. Check
constraints can also be applied when generating a full factorial design or random fractional factorial
design.

In Ngene, check constraints are specified through the optional properties reject and/or require
. All constraints are specified in an environment that starts with a colon (: ), similar to the cond
environment. In the reject and require environments, each property value is a check constraint
represented by a logical expression, separated by a comma (, ). No comma should appear after the
last logical expression. Check constraints are specified in the following format.

;reject:
logical expression , ...

;require:
logical expression , ...

Ngene evaluates each choice task against all check constraints. When using reject, a choice task
passes a check constraint when the logical expression is False. Similarly, when using require, a
choice task passes a check constraint when the logical expression is True. If the choice task passes
all check constraints, it is accepted.

Whether to use reject or require depends on the situation. To rule out undesirable choice tasks,
which is the most common use of check constraints, one should use reject. One would use require
to force certain attributes to have certain values, for example, to create a status quo alternative (see
Section 6.5) or scenario variables (see Section 6.6). Both reject and require can appear in the
same script.
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design ? Laptop choice example

;alts = (laptopA, laptopB)

;rows = 12

;block = 2

;eff = (mnl,d)

;alg = mfedorov

;reject:

? Laptops with Core i7/i9 processors cannot have a low price
laptopA.PROCESSOR >= 2 and laptopA.PRICE = 1200,
laptopB.PROCESSOR >= 2 and laptopB.PRICE = 1200,

? Laptops with Core i3/i5 processors cannot have a high price
laptopA.PROCESSOR <= 1 and laptopA.PRICE = 2100,

laptopB.PROCESSOR <= 1 and laptopB.PRICE = 2100

;model: ? using estimation coding

U(laptopA, laptopB) = proc.dummy[-0.7|-0.5|-0.1] * PROCESSOR[®,1,2,3]
+ stor[0.0015] * STORAGE[256,512,1024,2048]
+ cost[-0.003] * PRICE[1200,1500,1800,2100]

? PROCESSOR: @(Core i3), 1(Core i5), 2(Core i7), 3(Core i9)

? STORAGE: 256 GB, 512 GB, 1024 GB, 2048 GB

? PRICE: $1200, $1500, $1800, $2100

$

Script 6.2: Check constraints

Let us consider again the two laptop constraints that were formulated as conditional constraints in
Section 6.3. These conditional constraints can be reformulated as the following check constraints:

1. Reject: PROCESSOR > 2 and PRICE = 1200
2. Reject: PROCESSOR < 1 and PRICE = 2100

In other words, if a choice task contains a profile of a laptop with a fast processor together and a
price of $1200, or a profile with a slow processor and a price of $2100, then Ngene rejects this choice
task.

In Script 6.2 we now use the modified Fedorov (as indicated by alg = mfedorov in line 6). Lines 9-10
in this script define Constraint 1 and lines 12-13 define Constraint 2. As before, these constraints
need to be applied to both alternatives, so in total four check constraints are needed.

There are again various ways of specifying the same constraint. For example, the following reject
constraints for line 9 in Script 6.1 would yield the same result:

laptopA.PROCESSOR >= 2 and laptopA.PRICE = 1200
laptopA.PROCESSOR > 1 and laptopA.PRICE < 1500

laptopA.PRICE = 1200 and laptopA.PROCESSOR = 2 or laptopA.PROCESSOR = 3

Table 6.2 shows the resulting D-efficient design with a D-error of 0.004114. Similarly to Table 6.1,
laptops with processor levels 0 and 1 never have a price of $2100, and laptops with processor levels 2
or 3 never have a price of $1200. Since the modified Fedorov algorithm will usually result in designs
with low attribute level balance for quantitative attributes, one may want to impose attribute level
frequency constraints as discussed in Section 5.4.
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Laptop A Laptop B

Choice task Block Processor Storage Price Processor Storage Price
1 1 3 256 1500 0 512 1800
2 1 1 2048 1800 3 512 1500
3 1 1 2048 1800 0 512 1200
4 1 3 2048 2100 1 256 1200
5 1 3 512 1500 0 2048 1800
6 1 0 512 1200 2 1024 2100
7 2 3 2048 2100 2 256 1500
8 2 2 2048 2100 0 256 1200
9 2 3 512 2100 2 256 1500
10 2 1 512 1800 2 256 1500
11 2 1 256 1200 0 2048 1800
12 2 1 1024 1200 2 2048 2100

Table 6.2: D-efficient design based with check constraints for laptop choice example

6.5 Status quo alternatives

As defined in Section 1.1, a status quo alternative is an existing alternative described by a fixed
profile. An example of a status quo alternative is shown in Figure 1.2, where “Active surveillance’
indicates the current situation of monitoring without treating.

Although adding a status quo alternative to the choice model does not influence the generation of
other design types, it does influence the generation of an efficient design because it affects the choice
probabilities. The way a status quo alternative is specified in Ngene depends on the algorithm used
to generate the efficient design, as well as on the type of attribute (quantitative or qualitative).

Script 6.3 generates an efficient design assuming informative local priors for a treatment choice
experiment with two treatment options, namely ‘radiotherapy’ (radio) and ‘surgery’ (surgery),
and ‘active surveillance’ (active) as a non-treatment status quo alternative. There are only two
attributes, namely side effects of treatment (SIDEEFFECTS) and probability of curing the patient (
PROBCURE ). The modified Fedorov algorithm (using a candidate set size of 256') was chosen for design
generation. To ensure reasonable attribute level balance, attribute level frequency constraints were
imposed in the utility function on line 11 (see Section 5.4).

The status quo alternative has fixed attribute levels, namely, no side effects (SIDEEFFECTS = @, which
is the base level) and zero probability of curing the patient (PROBCURE = 0). For quantitative variables
such as PROBCURE, it is easy to fix to a specific level by specifying a new attribute with one level only.
In line 19 of Script 6.3, PROBCURE_SQ was defined with a single level (0), multiplied by the same
parameter cure as PROBCURE in the utility functions of the other alternatives. For the qualitative
attribute SIDEEFFECTS, we specified the following check constraint on lines 7-8 of the script to fix
its level to 0 for the status quo alternative:

;require:
active.SIDEEFFECTS = 0

INote that the full factorial contains 4% = 256 choice tasks, therefore the default candidate set size of 2000 could not
be achieved and was therefore decreased to 256.
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design ? treatment choice example

;alts = radio, surgery, active ? radiotherapy, surgery, active surveillance
;rows = 16

;block = 2

;eff = (mnl,d)

;alg = mfedorov(candidates = 256)

;require:
active.SIDEEFFECTS = 0
;model:
U(radio) = side.dummy[-0.2]|-0.4]|-0.9] * SIDEEFFECTS[1,2,3,0]
+ cure[0.02] * PROBCURE[30,50,70,90](3-5,3-5,3-5,3-5)
/
U(surgery) = cons[-0.6]
+ side * SIDEEFFECTS
+ cure * PROBCURE
/
U(active) = conal[-0.5]
+ side * SIDEEFFECTS
+ cure * PROBCURE_SQLQ]
? SIDEEFFECTS: O(None), 1(Mild), 2(Moderate), 3(Severe)
? PROBCURE: 0% (SQ), 30%, 50%, 70%, 90%
$

Script 6.3: Status quo alternative

The resulting efficient design is shown in Table 6.3. As expected, the last two columns show fixed
attribute levels for status quo alternative ‘active surveillance’.

When using the default swapping algorithm, check constraints cannot be imposed to fix status quo
levels of qualitative attributes. Instead, for each dummy coded qualitative attribute one needs to
ensure that the status quo level is the base level. In this case, the attribute can simply be omitted
from the utility function of the status quo alternative as it defaults to zero.

In Script 6.3 we assumed that ‘radiotherapy’ and ‘surgery’ could have no side effects. Now suppose
that these treatment options are expected to always have some side effects. A common mistake is
that one naively expands the check constraints on lines 7-8 in Script 6.3 to:

;require:

radio.SIDEEFFECTS > 0,
surgery.SIDEEFECTS > 0,
active.SIDEEFFECTS = 0

Running the updated descript would produce a design with an Undefined (infinite) D-error. The
reason is that base level 0 (no side effects) only appears in ‘active surveillance’, and since this attribute
was dummy coded it now represents an additional constant in the utility function. As a result, the
model becomes overspecified, and the parameters are not identifiable in model estimation. Changing
to effects coding or using a different normalisation of the constants will not resolve the issue. The
solution is to absorb level 0 (no side effects) in the constant (cona) of ‘active surveillance’ and remove
this level from attribute SIDEEFFECTS in the utility functions of ‘radiotherapy’ and ‘surgery’, see
Script 6.4. Since the base level of the dummy coded attribute SIDEEFFECTS has now changed, several
priors also require consistent updating.
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Radiotherapy Surgery Active surveillance

Choice task Block Side eff Cure prob Side eff Cure prob Side eff Cure prob

1 1 1 30 3 90 0 0
2 1 2 30 1 90 0 0
3 1 0 90 1 30 0 0
4 1 3 30 2 90 0 0
5 1 2 50 3 70 0 0
6 1 2 90 0 30 0 0
7 1 2 90 0 50 0 0
8 1 0 70 2 30 0 0
9 2 1 50 0 90 0 0
10 2 3 90 2 30 0 0
11 2 0 50 1 70 0 0
12 2 3 90 0 50 0 0
13 2 0 30 2 70 0 0
14 2 3 30 1 50 0 0
15 2 1 70 2 30 0 0
16 2 1 70 3 90 0 0

Table 6.3: D-efficient design with status quo alternative for treatment choice example

1 design ? treatment choice example

2 ;alts = radio, surgery, active ? radiotherapy, surgery, active surveillance
3 ;rows = 16

4+ ;block = 2

s ;eff = (mnl,d)

¢ ;alg = mfedorov(candidates = 144)

7 ;model:

s U(radio) = side.dummy[-0.2]|-0.7] * SIDEEFFECTS[2,3,1]

9 + cure[0.02] * PROBCURE[39,50,70,90](3-5,3-5,3-5,3-5)
10 /

1 U(surgery) = cons[-0.6]

12 + side * SIDEEFFECTS

13 + cure * PROBCURE

14 /

15 U(active) = conal[-0.3]

16 + cure * PROBCURE_SQL[Q]

17 ? SIDEEFFECTS: O(None), 1(Mild), 2(Moderate), 3(Severe)

18 ? PROBCURE: 0% (SQ), 30%, 50%, 70%, 90%

v $

Script 6.4: Specifying an identifiable model
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design ? mode choice example
;alts = walk, bike, car

;rows = 12

;block = 2

;eff = (mnl,d)

;con

;model:

U(walk) = conw[0.3] ? Constant for walk
+ wtime[-0.03] * WTIME[20,30,40] ? Walking time (min)
+ ww.dummy[-0.1|-0.4] * WEATHER[1,2,0] ? Weather: @ = Sun (base), 1 = Wind, 2 = Rain
/

U(bike) = conb[0.2] ? Constant for bus
+ btime[-0.02] * BTIME[10,15,20] ? Riding time (min)
+ wb.dummy[-0.4|-0.6] * WEATHER[WEATHER]
/

U(car) = ctime[-0.015] * TTIMEL6,8,10] ? Driving time (min)
+ cost[-0.2] * FUEL[1,2,3] ? Fuel cost (%)

$

Script 6.5: Scenario variable with default swapping algorithm

6.6 Scenario variables

As stated in Chapter 1, a scenario describes the context in which an agent makes a decision. A
scenario variable differs from an attribute in that it does not relate to a specific alternative, but
rather the choice context is constant across all alternatives.

To create a scenario variable in Ngene, it needs to be added to one or more utility functions in the
model property, and then its value must be restricted to be the same across all alternatives.

Script 6.5 generates an efficient design for a mode choice experiment whereby scenario variable
WEATHER describes the weather conditions (sun, wind, rain). The weather condition is not an attribute
of any of the alternatives (walk, bike, or car), but rather a context that is the same across all the
alternatives. In this script, WEATHER is added as a variable in the utility functions of both walk and
bike, but is left out as a main effect in alternative car for model identifiability reasons. The priors
of the alternative-specific weather coefficients ww and wb indicate that during windy and rainy
weather, walking and cycling become less attractive compared to the car.

In Script 6.5 the default swapping algorithm is used. To create a scenario variable, attribute levels
are linked on line 14 using the syntax: WEATHER[WEATHER]. This means that the attribute WEATHER
for alternative bike has the same level as the attribute WEATHER for alternative walk. Alternatively,
one could specify the following conditional constraints in the syntax to define the scenario variable:

;cond:

if(walk.WEATHER = 0, bike.WEATHER = 0),
if(walk.WEATHER = 1, bike.WEATHER = 1),
if(walk.WEATHER = 2, bike.WEATHER = 2)

Table 6.4 shows the resulting efficient design. It is clear that the Weather columns for ‘walk’ and
‘bike’ have the same level. To illustrate what this would look like in a choice experiment, the first
two choice tasks from Table 6.4 are shown in Figure 6.1. In the first choice task, the Weather level
is 0 (Sun), while in the second choice task the Weather level is 2 (Rain).

Script 6.6 generates an efficient design for the same example of mode choice, but now using the
modified Fedorov algorithm (with attribute level frequency constraints (4,4,4)). In this case, the
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Walk Bike Car
Choice task Block Time Weather Time Weather Time Fuel cost

1 1 20 0 15 0 6 1
2 1 40 2 20 2 10 3
3 1 20 1 10 1 8 2
4 1 30 1 20 1 10 1
5 1 40 0 10 0 8 3
6 1 30 2 15 2 6 2
7 2 40 0 15 0 10 1
8 2 40 1 20 1 6 3
9 2 20 0 20 0 8 3
10 2 30 2 15 2 6 1
11 2 30 1 10 1 8 2
12 2 20 2 10 2 10 2

Table 6.4: D-efficient design with scenario variable for mode choice example

Choice task 1. Suppose that is sunny weather. How would you like to travel to work?

Walk Bicycle Car
20 minutes walking 15 minutes riding 6 minutes driving
$1 fuel cost
® O O

Choice task 2. Suppose that is rainy weather. How would you like to travel to work?

Walk Bicycle Car
40 minutes walking 20 minutes riding 10 minutes driving
$3 fuel cost
O O ®

Figure 6.1: Mode choice tasks with varying scenarios
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design ? mode choice example
;alts = walk, bike, car

;rows = 12

;block = 2

;eff = (mnl,d)

;alg = mfedorov

;require:

walk.WEATHER = bike.WEATHER

;con

;model:

U(walk) = conw[0.3] ? Constant for walk
+ wtime[-0.03] * WTIME[20,30,401(4,4,4) ? Walking time (min)
+ ww.dummy[-0.1|-0.4] * WEATHER[1,2,0] ? Weather: @ = Sun (base), 1 = Wind, 2 = Rain
/

U(bike) = conb[0.2] ? Constant for bus
+ btime[-0.02] * BTIME[10,15,201(4,4,4) ? Riding time (min)
+ wb.dummy[-0.4|-0.6] * WEATHER
/

U(car) = ctime[-0.015] * TTIME[L6,8,10]1(4,4,4) ? Driving time (min)
+ cost[-0.2] * FUEL[1,2,3]1(4,4,4) ? Fuel cost (%)

$

Script 6.6: Scenario variable with modified Fedorov algorithm

A patient is 50 years old and has a pre-existing heart disease. As his doctor, which treat-
ment option for prostate cancer do you think is best for this patient?

Radiotherapy Surgery Active surveillance
Mild side effects Severe side effects No side effects
70% chance of curing 90% chance of curing 0% chance of curing
patient patient patient
® @) O

Figure 6.2: Treatment choice task with multiple scenario variables

variable WEATHER has been defined as a regular variable in the utility functions of walk and bike
, but the following check constraint is specified on lines 7-8 to ensure that WEATHER has the same
level across both alternatives in each choice task:

;require:
walk.WEATHER = bike.WEATHER

Figure 6.2 shows an example choice task in the treatment choice experiment where we added
two scenario variables that vary from choice task to choice task. In this example, the choice for
‘radiotherapy’, ‘surgery’, or ‘active surveillance’ may depend on the age of the patient and whether
the patient has pre-existing heart disease or not. A design for this choice experiment can be generated
with Script 6.7. Scenario variables AGE and HEARTDISEASE have been added to the utility functions
of radio and surgery, whereby the priors of their parameters age_r, age_s, heart_r,and heart_s
indicate the beliefs that ‘active surveillance’ is more preferably for older patients, ‘surgery’ is less
(and ‘radiotherapy is more) preferred for patients with a heart disease. The attribute levels of the
scenario variables are linked together in lines 9—-10 of the script.
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design ? treatment choice example

;alts = radio, surgery, active ? radiotherapy, surgery, active surveillance
;rows = 16

;block = 2

;eff = (mnl,d)

;alg = mfedorov

;require:

active.SIDEEFFECTS = 0,

radio.AGE = surgery.AGE,

radio.HEARTDISEASE = surgery.HEARTDISEASE

;model:
U(radio) = conr[0.5]
+ side.dummy[-0.2]|-0.4]|-0.9] * SIDEEFFECTS[1,2,3,0]
+ curel[0.02] * PROBCUREL30,50,70,90]1(3-5,3-5,3-5,3-5)
+ age_r[-0.01] * AGE[40,50,60,70]1(4,4,4,4)
+ heart_r.dummy[0.1] * HEARTDISEASE[1,0]
/
U(surgery) = cons[-0.1]
+ side * SIDEEFFECTS
+ cure * PROBCURE
+ age_s[-0.02] * AGE[40,50,60,70]1(4,4,4,4)
+ heart_s.dummy[-0.3] * HEARTDISEASE[1,0]
/
U(active) = side * SIDEEFFECTS
+ cure * PROBCURE_SQ[@]
? SIDEEFFECTS: 0O(None), 1(Mild), 2(Moderate), 3(Severe)
? PROBCURE: 0%, 30%, 50%, 70%, 90%
? AGE: 30 years, 40 years, 50 years, 60 years
? HEARTDISEASE: @(No), 1(Yes)
$

Script 6.7: Status quo alternative and multiple scenario variables

While scenario variables can be added as main effects in J — 1 alternatives in a labelled choice exper-
iment, whereby J is the number of alternatives, scenario variables can only be added as interaction
effects in an unlabelled choice experiment. An example is shown in Script 6.8, in which we added
a qualitative scenario variable called PURPOSE that indicates the context of purchase of a laptop,
namely home use (level 0) or office use (level 1). This scenario variable is interacted with the PRICE,
whereby the prior of the interaction parameter cost_x_purpose indicates the belief that consumers
are less price sensitive when the laptop is purchased for office use.

Observe that PURPOSE only appears in an interaction effect in Script 6.8; adding it as a main effect
in both alternatives would make the model unidentified, while putting it as a main effect in only
one unlabelled alternative does not have a meaningful interpretation. Instead of interacting PURPOSE
only with PRICE, it could also interact with the other attributes as shown in the syntax below (see
also Section 3.9). This would increase the number of parameters, and therefore one would want to
increase the design size.
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design ? laptop choice example
;alts = (laptopA, laptopB)

;rows = 12
;block = 2
;eff = (mnl,d)
;model:
U(laptopA) = proc.dummy[-0.7]|-0.5|-0.1] * PROCESSOR[O,1,2,3]
+ stor[0.0015] * STORAGE[256,512,1024,2048]
+ cost[-0.003] * PRICE[1200,1500,1800,2100]
+ cost_x_purpose[0.001] * PRICE * PURPOSE[Q,1]
/
U(laptopB) = proc * PROCESSOR
+ stor * STORAGE
+ cost * PRICE
+ cost_x_purpose * PRICE * PURPOSE[PURPOSE]
? PROCESSOR: @(Core i3), 1(Core i5), 2(Core i7), 3(Core 1i9)
? STORAGE: 256 GB, 512 GB, 1024 GB, 2048 GB
? PRICE: $1200, $1500, $1800, $2100
? PURPOSE: @(Home), 1(0ffice)
$

Script 6.8: Scenario variable in unlabelled experiment

U(laptopA) = proc.dummy[-0.7|-0.5|-0.1] * PROCESSOR[®,1,2,3]

+ stor[0.0015] * STORAGE[256,512,1024,2048]

+ cost[-0.003] * PRICE[1200,1500,1800,2100]

+ cost_x_purpose[0.001] * PRICE * PURPOSE[@Q,1]
+ proc@_x_purpose * PROCESSOR.level[0] * PURPOSE

+ procl_x_purpose * PROCESSOR.level[1] * PURPOSE

+ proc2_x_purpose * PROCESSOR.level[2] * PURPOSE

+ stor_x_purpose * STORAGE * PURPOSE

If PURPOSE had more than two levels, then even more interaction effects would be required. In that
case, in the script one would first need to define PURPOSE as a dummy or effects-coded attribute
before it can be used in an interaction. This is explained in more detail in Section 7.2.

6.7 Attribute level overlap

When a choice experiment has more attributes, the complexity of each choice task increases, in-
creasing the cognitive burden on agents. A strategy to simplify choice tasks is to create attribute
level overlap across unlabelled alternatives, see also Sections 1.2 and 1.5.

Attribute level overlap can be imposed via check constraints. Consider the laptop choice experiment
and assume that each unlabelled alternative (A, B) has five attributes, namely processor (PROC),
storage capacity (STOR), screen size (SCRN), internal memory (MEM), and price (PRICE). Script 6.9
generates an efficient design in which each choice task has exactly two overlapping attributes. This
is achieved with a large number of reject constraints as shown on lines 7-34 of this script.

Table 6.5 shows the resulting design, in which the overlapping attributes are coloured light blue. In
each choice task, an agent makes a decision by trading off on three different attributes, while the
other attributes have the same level. Attributes that overlap vary between choice tasks. It can be seen
that the processor attribute is often not overlapping, while storage capacity and price often have
overlapping attribute levels. This is a result of the efficient design generation process and depends
on the priors specified for each attribute, as well as the coding of each attribute. In this example, we
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Laptop A Laptop B

Task Block Proc Stor Screen Memory Price Proc Stor Screen Memory Price
1 1 3 2048 2100 0 512 1200
2 1 512 15 1200 20438 13 2100
3 1 0 15 32 2 17 8
4 1 0 17 32 1 15 ]
5 1 2 256 1200 0 2048 2100
6 1 1 13 32 2 15 3
7 1 3 13 8 2 17 32
] 1 1 17 8 3 13 32
9 2 2 13 8 1 15 32
10 2 0 256 1500 1 2048 2100
11 2 0 20438 8 3 256 32
12 2 3 17 8 1 13 32
13 2 2 13 32 3 17 3
14 2 1 512 32 0 2048 8
15 2 3 15 2100 1 17 1500
16 2 3 13 1500 2 15 2100

Table 6.5: Explicit partial profile design with 2 overlapping attributes in each choice task

You are looking to buy a new laptop. Which of the following
laptops would you prefer?

Laptop A Laptop B
Intel Core i7 processor Intel Core i3 processor
2048 GB hard-disk drive 512 GB hard-disk drive
$2100 $1200
O ®

Figure 6.3: Laptop choice task with 2 overlapping attributes

chose a relatively small design size of 16, but with overlapping attributes a larger number of rows
would be preferred as each choice task now captures less information.

The design in Table 6.5 is also referred to as an explicit partial profile design whereby overlapping
attributes are explicitly shown in each choice task. Figure 6.3 illustrates what the first choice task
in Table 6.5 could look like in a survey.

If one would omit overlapping attributes, one would obtain what is called an implicit partial profile
design in Table 6.6. Although a choice task with implicit partial profiles is simpler (in terms of
cognitive burden on an agent) than a choice task with explicit partial profiles, implicit partial profiles
should not be used in the presence of one or more labelled alternatives (such as an opt-out alternative)
or in the presence of potential interaction effects.

Script 6.9 contains the property alg = mfedorov and by default creates a candidate set of 2000
choice tasks (see Section 5.4) that satisfy all specified check constraints in this script. To be able
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design

? Laptop choice example

;alts = (A, B)

;rows = 16

;block = 2

;eff = (mnl,d)

;alg = mfedorov

;reject:

? Cannot have 5 overlapping attributes

A.PROC= B.PROC and A.STOR= B.STOR and A.SCRN= B.SCRN and A.MEM= B.MEM
? Cannot have 4 overlapping attributes

A.PROC<>B.PROC and A.STOR= B.STOR and A.SCRN= B.SCRN and A.MEM= B.MEM
A.PROC= B.PROC and A.STOR<>B.STOR and A.SCRN= B.SCRN and A.MEM= B.MEM
A.PROC= B.PROC and A.STOR= B.STOR and A.SCRN<>B.SCRN and A.MEM= B.MEM
A.PROC= B.PROC and A.STOR= B.STOR and A.SCRN= B.SCRN and A.MEM<>B.MEM
A.PROC= B.PROC and A.STOR= B.STOR and A.SCRN= B.SCRN and A.MEM= B.MEM
? Cannot have 3 overlapping attributes

A.PROC<>B.PROC and A.STOR<>B.STOR and A.SCRN= B.SCRN and A.MEM= B.MEM
A.PROC<>B.PROC and A.STOR= B.STOR and A.SCRN<>B.SCRN and A.MEM= B.MEM
A.PROC<>B.PROC and A.STOR= B.STOR and A.SCRN= B.SCRN and A.MEM<>B.MEM
A.PROC<>B.PROC and A.STOR= B.STOR and A.SCRN= B.SCRN and A.MEM= B.MEM
A.PROC= B.PROC and A.STOR<>B.STOR and A.SCRN<>B.SCRN and A.MEM= B.MEM
A.PROC= B.PROC and A.STOR<>B.STOR and A.SCRN= B.SCRN and A.MEM<>B.MEM
A.PROC= B.PROC and A.STOR<>B.STOR and A.SCRN= B.SCRN and A.MEM= B.MEM
A.PROC= B.PROC and A.STOR= B.STOR and A.SCRN<>B.SCRN and A.MEM<>B.MEM
A.PROC= B.PROC and A.STOR= B.STOR and A.SCRN<>B.SCRN and A.MEM= B.MEM
A.PROC= B.PROC and A.STOR= B.STOR and A.SCRN= B.SCRN and A.MEM<>B.MEM
? Cannot have 1 overlapping attribute

A.PROC<>B.PROC and A.STOR<>B.STOR and A.SCRN<>B.SCRN and A.MEM<>B.MEM
A.PROC<>B.PROC and A.STOR<>B.STOR and A.SCRN<>B.SCRN and A.MEM= B.MEM
A.PROC<>B.PROC and A.STOR<>B.STOR and A.SCRN= B.SCRN and A.MEM<>B.MEM
A.PROC<>B.PROC and A.STOR= B.STOR and A.SCRN<>B.SCRN and A.MEM<>B.MEM
A.PROC= B.PROC and A.STOR<>B.STOR and A.SCRN<>B.SCRN and A.MEM<>B.MEM
? Cannot have 0 overlapping attributes

A.PROC<>B.PROC and A.STOR<>B.STOR and A.SCRN<>B.SCRN and A.MEM<>B.MEM

;model:

U(A,B) = proc.dummy[-0.7]|-0.5|-0.1] *
+ stor[0.0015] *
+ scrn.dummy[-0.2]0.3] *
+ mem[0.03] *
+ cost[-0.003] *
? PROC: @(Core i3), 1(Core i5), 2(Co
? STOR: 256 GB, 512 GB, 1024
? SCRN: 13", 15", 17"
? MEM: 8 GB, 16 GB, 32 G
? PRICE: $1200, $1500, $180
$

PROC[O,1,2,3]
STOR[256,512,1024,2048]
SCRN[13,15,17]
MEML8,16,32]
PRICE[1200,1500,1800,2100]
re i7), 3(Core i9)

GB, 2048 GB

B

9, $2100

and

and
and
and
and
and

and
and
and
and
and
and
and
and
and
and

and
and
and
and
and

and

>

>>>>>> > > > > > > > > >

> > > > >

>

.PRICE= B

.PRICE=
.PRICE=
.PRICE=
.PRICE=
.PRICE<>B.

B.
B.
B.
B.

.PRICE= B.
.PRICE= B.
.PRICE= B.
.PRICE<>B.
.PRICE= B.
.PRICE= B.
.PRICE<>B.
.PRICE= B.
.PRICE<>B.
.PRICE<>B.

.PRICE= B.
.PRICE<>B.
.PRICE<>B.
.PRICE<>B.
.PRICE<>B.

.PRICE<>B.

.PRICE,

PRICE,
PRICE,
PRICE,
PRICE,
PRICE,

PRICE,
PRICE,
PRICE,
PRICE,
PRICE,
PRICE,
PRICE,
PRICE,
PRICE,
PRICE,

PRICE,
PRICE,
PRICE,
PRICE,
PRICE,

PRICE

Script 6.9: Design with two overlapping attributes
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Laptop A Laptop B

Task Block Proc Stor Screen Memory Price Proc Stor Screen Memory Price
1 1 3 2048 2100 0 512 1200
2 1 512 15 1200 20438 13 2100
3 1 0 15 32 2 17 8
4 1 0 17 32 1 15 ]

5 1 2 256 1200 0 2048

6 1 1 13 32 2 15 3

7 1 3 13 8 2 17 32

] 1 1 17 8 3 13 32

9 2 2 13 8 1 15 32

10 2 0 256 1500 1 2048 2100
11 2 0 20438 8 3 256 32

12 2 3 17 8 1 13 32

13 2 2 13 32 3 17 ]

14 2 1 512 32 0 2048 8

15 2 3 15 2100 1 17 1500

16 2 3 13 1500 2 15 2100

Table 6.6: Implicit partial profile design with 2 overlapping attributes in each choice task

to inspect this candidate set before generating an efficient design, it is often useful to separate
candidate set generation from efficient design generation. This can be achieved by creating two
scripts as illustrated below. Script 1 first generates a random candidate set in a design named, say,
‘My Candidate Set’, taking into account any specified check constraints. Then script 2 reads that
candidate set and generates an efficient design using the modified Fedorov algorithm.

design ? Script 1: Generates candidate set
;rows = 2000

;rand

;reject:

design ? Script 2: Generates efficient design
;rows = 16
;alg = mfedorov(candidates = My Candidate Set)

Writing check constraints to create attribute level overlap, such as on lines 7-34 in Script 6.9, may
be quite tedious, especially if the number of attributes is large. Instead of manually typing these
constraints, it may be more practical to generate the desired candidate set outside Ngene, see Section
6.9.

6.8 Availability of alternatives

When a choice experiment has many alternatives, choice task complexity is high and agents may
start adopting simplifying decision rules, which is undesirable. A strategy to simplify choice tasks
is to make only a subset of alternatives available in a choice task, which results in a partial choice
set design, see also Section 1.2.
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Which of the following available transport modes would you prefer to travel to work?

Car Bus Bike
15 min 25 min 40 min
$3 $1 $0
O O ®

Figure 6.4: Mode choice task with 3 available alternatives

The availability of alternatives in a choice task can be imposed via check constraints. It involves a
trick that ensures that some alternatives are assigned a zero choice probability in the model such that
they mathematically drop out of the choice set in the efficient design generation process. Consider
a mode choice experiment with five alternatives: car, train, bus, tram, and bike. Script 6.10
generates an efficient design in which exactly three alternatives are available in each choice task.
This is achieved with a large number of reject constraints as shown on lines 8-35 of this script.

To assign a zero choice probability to a mode, we need to have the option to make an alternative very
unattractive. This is achieved by allowing for a very large positive or negative level to be assigned
to one of the attributes. For this trick to work, this attribute needs to be quantitative (not dummy or
effects coded) and have a non-zero prior such that the utility can become very negative and hence
would receive a zero choice probability. In Script 6.10 we chose to add level 999 to the cost attribute
in each alternative.”

Table 6.7 shows the resulting design, where the unavailable alternatives are shown in light blue.” In
each choice task, an agent chooses between three available alternatives, while the other alternatives
are not available. The available choice options now vary across choice tasks. Since the modified
Fedorov algorithm does not ensure attribute level balance, one may want to impose additional
attribute level frequency constraints, see Section 5.4, with which one can also control how often
each alternative must be available across all choice tasks. Figure 6.4 illustrates what the first choice
task in Table 6.7 could look like in a survey.

Writing check constraints to define availability of alternatives, such as on lines 8-35 in Script 6.10,
can be tedious if the number of alternatives is large. Instead of manually typing these constraints, it
may be more practical to generate the desired candidate set outside Ngene; see Section 6.9.

6.9 External candidate sets

When constraints are complex, it may be easier to generate a candidate set outside of Ngene. For
example, imposing overlap across many attributes (see Section 6.7), or defining the availability of
many alternatives (see Section 6.8), or other types of constraints that cannot easily be formulated
via conditional constraints or check constraints in Ngene.

A candidate set is a (typically large) design that contains allowable choice tasks. Suppose that
one has created a candidate set with file name ‘My Candidate Set’ in Ngene design matrix format,
which can be seen in Figure 2.13(a) and requires that the string ‘Choice situation’ appears in the

ZFor instance, if cst1 equals 999 so this attracts a disutility of —0.3 X 999 ~ —300, which yields a choice probability
of zero for the car. If the prior value was smaller, say —0.0001, then a higher level such as 999999 should be chosen to
allow a large negative utility.

3Whenever an alternative has an attribute level of 999, then it receives a zero choice probability and hence it is assumed
to be unavailable.
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design

? Mode choice example

;alts = car, train, bus, tram, bike

;rows = 20
;block = 2
;eff = (mnl,d)

;alg = mfedorov

;con
;reject:
? Cannot have
car.CST1= 999
? Cannot have
car.CST1<>999
car.CST1= 999
car.CST1= 999
car.CST1= 999
car.CST1= 999
? Cannot have
car.CST1<>999
car.CST1<>999
car.CST1<>999
car.CST1<>999
car.CST1= 999
car.CST1= 999
car.CST1= 999
car.CST1= 999
car.CST1= 999
car.CST1= 999
? Cannot have
car.CST1<>999
car.CST1<>999
car.CST1<>999
car.CST1<>999
car.CST1= 999
? Cannot have
car.CST1<>999
;model:
U(car)

U(train)

b3

N~ 4+ + 1l N+ +

U(bus)

b3

N~ + +

U(tram)
b9
b3

N~ + +

U(bike)

+

b3
$

zero available alternatives

and
one
and
and
and
and
and
two
and
and
and
and
and
and
and
and
and
and

train.

CST2= 999 and bus

available alternative

train.
train.
train.
train.
train.

CST2= 999
CST2<>999
CST2= 999
CST2= 999
CST2= 999

and bus
and bus
and bus
and bus
and bus

available alternatives

train.
train.
train.
train.
train.
train.
train.
train.
train.
train.

CST2<>999
CST2= 999
CST2= 999
CST2= 999
CST2<>999
CST2<>999
CST2<>999
CST2= 999
CST2= 999
CST2= 999

and
and
and
and
and
and
and
and
and
and

four available alternatives

and train.CST2<>999
and train.CST2<>999
and train.CST2<>999
and train.CST2= 999
and train.CST2<>999

five available alternatives

and train.CST2<>999 and bus.CST3<>999
b1[0.3]

b2[-0.05] =*
b3[-0.3] =*

b4[0.2]
b5[-0.04] =*

b8[0.1]

b6[-0.2]
b7[-0.06] =*

b10[-0.08] *

TIME1[15,20,25]
CsT1[1,2,3,

TIME2[10,15,20]
CST2[2,3,4,

TIME3[15,20,25]
CcsT3[1,2,3,

TIME4[10,15,20]
CsT4[1,2,3,

TIME5[20,30,40]
CST5[0,

bus.
bus.
bus.
bus.
bus.
bus.
bus.
bus.
bus.
bus.

and bus.
and bus.
and bus.
and bus.
and bus.

999] ?

999] ?

9991 ?

999]

9991 ?

.CST3= 999 and
.CST3= 999
.CST3= 999
.CST3<>999
.CST3= 999
.CST3= 999

and
and
and
and
and

CST3= 999
CST3<>999
CST3= 999
CST3= 999
CST3<>999
CST3= 999
CST3= 999
CST3<>999
CST3<>999
CST3= 999

and
and
and
and
and
and
and
and
and
and

CST3<>999
CST3<>999
CST3= 999
CST3<>999
CST3<>999

and
and
and
and
and

and
? car

? car
car

tram.

tram.
tram.
tram.
tram.
tram.

tram.
.CST4= 999
.CST4<>999

tram
tram

tram.
tram.
tram.
tram.
tram.
tram.
tram.

tram.
tram.
tram.
tram.
tram.

tram.
constant

travel time
travel cost

CST4= 999
CST4=
CST4= 999
CST4= 999
CST4<>999
CST4= 999

999

CST4= 999

CST4= 999
CST4= 999
CST4<>999
CST4= 999
CST4<>999
CST4= 999
CST4<>999

CST4<>999
CST4= 999
CST4<>999
CST4<>999
CST4<>999

CST4<>999

? train constant
? train travel time

? bus constant
? bus travel time

? tram constant

train travel cost

bus travel cost

? tram travel time

? tram travel cost

? bike travel time

bike travel cost

and

and
and
and
and
and

and
and
and
and
and
and
and
and
and
and

and
and
and
and
and

and

bike.

bike.
bike.
.CST5= 999,
bike.
bike.

bike

bike.

bike

bike.
bike.
bike.
bike.
bike.

bike.

CST5= 999,

CST5= 999,
CST5= 999,

CST5= 999,
CST5<>999,

CST5= 999,

.CST5= 999,
bike.
bike.
bike.
bike.
bike.
bike.
bike.
bike.

CST5= 999,
CST5<>999,
CST5= 999,
CST5= 999,
CST5<>999,
CST5= 999,
CST5<>999,
CST5<>999,

CST5= 999,
CST5<>999,
CST5<>999,
CST5<>999,
CST5<>999,

CST5<>999

Script 6.10: Partial choice set design with three available alternatives
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Car Train Bus Tram Bike

Task Block Time Cost Time Cost Time Cost Time Cost Time Cost

1 1 15 3 25 1 40 0
2 1 15 1 20 3 20 0
3 1 20 3 15 3 40 0
4 1 10 4 25 1 20 0
5 1 25 1 10 2 20 3

6 1 25 2 20 2 10 3

7 1 25 3 25 1 40 0
8 1 15 1 10 4 15 3

9 1 15 3 10 1 20 0
10 1 25 3 10 2 25 3

11 2 25 3 15 3 40 0
12 2 15 1 15 1 10 3

13 2 25 1 20 4 20 0
14 2 20 2 25 1 10 3

15 2 15 3 10 2 10

16 2 20 4 25 1 40 0
17 2 15 1 20 3 20 0
18 2 10 4 15 1 40 0
19 2 20 4 15 1 20 0
20 2 15 3 20 2 20 1

Table 6.7: Partial choice set design with 3 available alternatives in each choice task
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first row/column.” This can be an Excel spreadsheet (:XLSX or .XLS) or CSV file generated using
Python, R, or Matlab for example. Then it can be imported into Ngene (see Section 2.5) and used
in conjunction with the modified Fedorov algorithm to generate an efficient design via the syntax
below.

;alg = mfedorov(candidates = My Candidate Set)

To be able to use an external candidate set, it is important that the alternatives and attributes in the
candidate set appear exactly the same order as those defined in the script to generate an efficient
design. In addition, all attribute levels in the external candidate set need to appear as an allowable
attribute level in the script. If the generated design has an Undefined efficiency, then this is often a
sign that too strict constraints have been imposed on the candidate set, resulting in multi-collinearity
or identifiability issues.

4This format can be viewed when exporting a design to Excel or when downloading an example file from the Import
Design screen (see Section 2.5).

123



Multiple model specifications

This chapter describes how to generate an efficient design that is optimised for multiple model
specifications simultaneously. At the design generation phase, a choice model is characterised by
a model type, utility functions, and parameter priors. Since one may be uncertain which model
specification best reflects the model that one will ultimately estimate, it may be useful to optimise
the design over a range of model specifications.

7.1 Different model specifications

Multiple specifications of utility functions and/or priors can be achieved by specifying multiple model
properties in the script, whereby each model is named. For example, suppose that we would like to
specify two different models named m1 and m2 (or any other names defined by the analyst). Then
in the script, we would add the model property twice with the name of each model in parentheses
as shown in the syntax below.

;model(m1):

;model(m2):

When specifying the model property multiple times, it is also necessary to specify the alts property
multiple times, as shown below. This is necessary because the alternatives could be different in the
model specifications.

;alts(m1)
;alts(m2)

Finally, the property eff needs to be adapted to indicate which (combination of) model(s) one would
like to optimise. For example, in the following syntax we aim to optimise the design for both models
ml and m2 simultaneously, whereby the D-error of model m1 is multiplied by 2. Ngene produces a
single experimental design in which efficiency results are presented for each model separately in
the Results screen.
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;eff = 2*m1(mnl,d) + m2(mnl,d)

In addition to different utility specifications, models could also have different model types (see
Section 5.1) and prior types (see Sections 5.3 and 5.5). In the syntax below m1 is specified as a
multinomial logit model with Bayesian priors, and model m2 is a panel random parameter logit
model with local priors.

;eff = mi(mnl,d,mean) + 0.5*m2(rppanel,d)

All other design properties are applied across all model specifications. This includes conditional
constraints through the property cond, check constraints specified through the properties reject
or require, Bayesian and random draws specified through properties bdraws and rdraws, etc.

7.1.1 Different utility specifications

Consider Script 7.1, which generates an efficient design for two models simultaneously, namely
model simple as specified on lines 7-14 for which five parameters are estimated and model elaborate
as specified on lines 15-28 for which 10 parameters are estimated. The model elaborate uses
dummy coding for the attribute STORAGE and also considers interaction effects between the at-
tributes PROCESSOR and PRICE. The levels of the attributes in model elaborate must be identical
to the attribute levels specified in model simple or can simply be omitted. Parameter priors need
to be specified in both models and will typically be different for different model specifications. If
no priors are specified, they default to zero. Informative priors for each model specification can be
obtained by estimating both models using data from a pilot study. In lines 2—-3 it is specified that
both models have the same alternatives and in line 6 it is specified that the D-error of model simple
carries a weight of 3. Note that this does not necessarily mean that the model simple is three times
as important because efficiency is not comparable between different models and may have entirely
different magnitudes.

Table 7.1 presents the generated efficient design. The D-error of this design for model simple is
0.003608, and has a weighted value of 3 X 0.003608 = 0.010824. The D-error for model elaborate
is 0.008342 and therefore carries only slightly less weight in the optimisation process than model
simple. The efficiency criterion for which the design was optimised is the weighted D-error with
value 3 X 0.003608 + 0.008342 = 0.019166.

Another example is shown in Script 7.2, whereby model allattributes contains all attributes and
model nostorage excludes the STORAGE attribute. Such a script may be of interest if one includes a
certain attribute but is not sure if it will be included in the final model or not (as it may be unclear
whether it is a relevant attribute or not). Ngene will now check both models for strictly dominant
alternatives (see also Section 3.8), which are more likely to occur in model nostorage because it only
contains two attributes. This is reflected in the smaller candidate set size in the modified Fedorov
algorithm.

7.1.2 Different model types

Script 7.3 illustrates the generation of an efficient design for two model specifications with a different
model type, namely a model named mnl, which is a multinomial logit model with Bayesian priors,
and a model named mx1, which is a mixed logit model with random parameters and local priors.
This script optimises the design for estimating both the mnl model and the mx1 model. As discussed
in Section 5.7, optimisation for mixed logit models is very computationally intensive. This script
also shows that constraints can be imposed as usual; see Chapter 6.
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18

19

20

21

design ? Laptop choice example

;alts(simple) = (laptopA, laptopB)

;alts(elaborate) = (laptopA, laptopB)

;rows = 16

;block = 2

;eff = 3*xsimple(mnl,d) + elaborate(mnl,d)

;model(simple): ? simple model with 5 parameters

U(laptopA, laptopB) = proc.dummy[-0.7]|-0.5]|-0.1] * PROCESSOR[@,1,2,3]
+ stor[0.0015] * STORAGE[256,512,1024,2048]
+ cost[-0.003] * PRICE[1200,1500,1800,2100]
?

;model(elaborate):
U(laptopA, laptopB)

more elaborate model with 10 parameters
proc.dummy[-0.6|-0.4|-0.2] * PROCESSOR
stor.dummy[-2.6]-1.8|-0.9] * STORAGE
cost[-0.002] * PRICE
proc@_x_price[-0.002] * PROCESSOR.level[0] * PRICE
*
*

procl_x_price[-0.0015] PROCESSOR.1level[1] * PRICE
proc2_x_price[-0.001] PROCESSOR. level[2] * PRICE
? PROCESSOR: @(Core i3), 1(Core i5), 2(Core i7), 3(Core i9)

+ + + + +

? STORAGE: 256 GB, 512 GB, 1024 GB, 2048 GB
? PRICE: $1200, $1500, $1800, $2100
$

Script 7.1: Different utility function specifications

Instead of optimising for both models, one could also optimise only for the mnl model by replacing
the syntax on line 6 with the efficiency criterion below. This allows the script to run much faster,
while in the Results screen one will still be able to inspect the design efficiency results for the mx1
model.

;eff = mnl(mnl,d,mean)

7.1.3 Different alternatives

An example of a script whereby each model has a different set of alternatives is shown in Script 7.4.
In the considered mode choice experiment, agents are asked to choose between a set of transport
modes, namely walk, bike, and car. The model called allmodes assumes that all three modes are
available to the agent. However, if the agent indicated earlier in the survey that they do not have
a car or bicycle available, then that alternative is not shown. Model nocar represents the model
whereby an agent does not have a car available, whereas model nobike is a model where the bike
is omitted as an alternative. This script minimises the average D-error across the three specified
models. Weights could be applied in the efficiency criterion on line 7 if one believes that certain
mode choice sets are more likely than others.

Special attention should be paid to the specifications of the utility functions. In particular, the label-
specific constants and the scenario variable WEATHER need to be added to the utility functions in such
a way that the parameters in all three models are identifiable. If we add label-specific constants for
alternatives walk and bike then the model nocar would have constants in both utility functions,
resulting in a model that cannot be estimated. Similarly, if scenario variable WEATHER would be added
to alternatives walk and bike then the parameters in model nocar would again not be identified.
Since walk is the only alternative available in all three model specifications, we normalise the
constant to zero for this alternative and also omit the scenario variable in this alternative.
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Laptop A Laptop B
Choice task Block Processor Storage Price Processor Storage Price
1 1 0 2048 1800 1 1024 1500
2 1 2 256 1500 1 2048 2100
3 1 2 512 1800 3 256 1800
4 1 0 512 1200 1 2048 2100
5 1 3 1024 2100 3 512 1200
6 1 2 1024 2100 0 256 1200
7 1 1 2048 1200 3 1024 1500
8 1 2 256 1500 0 512 1800
9 2 3 256 1200 2 2048 1500
10 2 0 2048 2100 1 512 1800
11 2 3 512 1500 0 1024 1800
12 2 1 2048 1500 2 512 1200
13 2 1 1024 1800 3 256 1500
14 2 3 512 2100 0 1024 1200
15 2 1 256 1200 2 2048 2100
16 2 0 1024 1800 2 256 2100

Table 7.1: Efficient design for multiple model specifications

design ? Laptop choice example
;alts(allattributes) = (laptopA, laptopB)
;alts(nostorage) = (laptopA, laptopB)
;rows = 12

;block = 2

;eff = 2*allattributes(mnl,d) + nostorage(mnl,d)

;alg = mfederov(candidates = 1000)

;model(allattributes): ? model containing all attributes
U(laptopA, laptopB) = proc.dummy[-0.7|-0.5|-0.1] * PROCESSOR[®,1,2,3]
* STORAGE[256,512,1024,2048]
* PRICE[1200,1500,1800,2100]

stor[0.0015]
cost[-0.003]

~ o+ o+

;model(nostorage):
U(laptopA, laptopB)

+ cost[-0.0035]

? PROCESSOR: @(Core i3), 1(Core i5), 2(Core i7),

? STORAGE: 256 GB, 512 GB, 1024 GB,
? PRICE: $1200, $1500, $1800,
$

model that excludes storage attribute
proc.dummy[-0.9|-0.6]-0.2] * PROCESSOR[0,1,2,3]

* PRICE[1200,1500,1800,2100]

3(Core i9)

2048 GB

$2100

Script 7.2: Omitted attribute

127



12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

design ? Laptop choice example

;alts(mnl) = (laptopA, laptopB)

;alts(mx1l) = (laptopA, laptopB)

;rows = 16

;block = 2

;eff = mnl(mnl,d,mean) + @.3*mx1(rppanel,d)
;bdraws = sobol(300)

;rdraws = gauss(3)

;rep = 500

;alg = mfederov(candidates = 1000)

;reject:

laptopA.PROCESSOR >= 2 and laptopA.PRICE = 1200,
laptopB.PROCESSOR >= 2 and laptopB.PRICE = 1200,
laptopA.PROCESSOR <= 1 and laptopA.PRICE = 2100,
laptopB.PROCESSOR <= 1 and laptopB.PRICE = 2100

;model(mnl): ? Multinomial logit model with Bayesian priors
U(laptopA, laptopB)
= proc.dummy[(u,-1,-0.6)|(u,-0.6,-0.4)|(u,-0.4,0)] * PROCESSOR[0,1,2,3]
+ stor[(n,0.0015,0.0005)] * STORAGE[256,512,1024,2048]
+ cost[(n,-0.003,0.001)] * PRICE[1200,1500,1800,2100]
;model(mx1l): ? Mixed logit model with random parameters and local priors
U(laptopA, laptopB)
= proc.dummy[n,-0.7,0.4|n,-0.5,0.3|n,-0.1,0.2] * PROCESSOR

+ stor[n,0.0015,0.0007] * STORAGE
+ cost[n,-0.003,0.0012] * PRICE
? PROCESSOR: @(Core i3), 1(Core i5), 2(Core i7), 3(Core 1i9)
? STORAGE: 256 GB, 512 GB, 1024 GB, 2048 GB
? PRICE: $1200, $1500, $1800, $2100

$

Script 7.3: Different model types and prior types

Another example in which models have different alternatives is shown in Script 7.5, which reflects
the choice task shown in Figure 7.1 containing a forced and unforced choice. This script generates
an efficient design for estimating models with and without an opt-out alternative. The opt-out
alternative is named neither in the script, and its utility function contains only a constant (none).
Model unforced is the model with the opt-out alternative and reflects the unforced choice set, while
model forced is the model without the opt-out alternative and reflects the forced choice set. The
efficiency criterion on line 6 in the script gives more weight to the unforced choice because the forced
choice only becomes relevant when an agent first selects the opt-out alternative in the unforced
choice set.

7.2 Auxiliary model specification

The ability to specify different utility functions offers additional flexibility beyond optimisation of
a design for multiple models. Sometimes it is useful to specify an auxiliary model to first define all
the variables in the model, while specifying another model to optimise the design for.

As mentioned in Sections 3.9 and 6.6, it is not possible within the current syntax capabilities in
Ngene to define a dummy or effects-coded attribute (or scenario variable) when it only appears in an
interaction effect. However, this limitation can be overcome by first specifying an auxiliary model
that defines all variables in the model and then specifying the model of interest. To illustrate, in
Script 7.6 we have defined an auxiliary model named aux and the model of interest is called main. On
line 6 we indicate that the design should only be optimised for model main. The script includes the
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design ? mode choice example
;alts(allmodes) = walk, bike, car
;alts(nocar) = walk, bike
;alts(nobike) = walk, car

;rows = 12

;block = 2

;eff = allmodes(mnl,d) + nocar(mnl,d) + nobike(mnl,d)

;con

;model(allmodes): ? walk, bike and car available

U(walk) = wtime[-0.03] * WTIME[20,30,40] ? Walking time (min)
/

U(bike) = conb[-0.1] ? Constant for bus
+ btime[-0.02] * BTIME[10,15,20] ? Riding time (min)
+ wb.dummy[-0.1|-0.4] * WEATHER[1,2,0] ? Weather: @ = Sun (base), 1 = Wind, 2 = Rain
/

U(car) = conc[-0.3] ? Constant for car
+ ctime[-0.015] * TTIME[6,8,10] ? Driving time (min)
+ cost[-0.2] * FUELL[1,2,3] ? Fuel cost ($)

+

wc.dummy[0.1]0.3] * WEATHER[LWEATHER]
;model(nocar): ? only walk and bike available

U(walk) = wtime[-0.04] * WTIME
/

U(bike) = conb[-0.15]
+ btime[-0.025] * BTIME

+ wb.dummy[-0.1|-0.5] * WEATHER
;model(nobike): ? only walk and car available

U(walk) = wtime[-0.05] * WTIME
/
U(car) = conc[-0.35]
+ ctime[-0.02] * TTIME
+ cost[-0.25] * FUEL
+ wc.dummy[0.15]0.4] * WEATHER

Script 7.4: Different alternatives

Walk Bike Car
Choice task Block Time Time Weather Time Fuel Weather

1 1 30 20 0 6 1 0
2 1 20 20 2 10 3 2
3 1 40 10 2 6 2 2
4 1 30 15 1 10 1 1
5 1 30 10 0 8 3 0
6 1 40 15 1 8 2 1
7 2 20 15 2 6 1 2
8 2 40 20 0 8 3 0
9 2 20 10 0 10 1 0
10 2 30 20 1 8 2 1
11 2 40 15 2 10 2 2
12 2 20 10 1 6 3 1

Table 7.2: Efficient design for models with different alternatives
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19

20

design ? Laptop choice example

;alts(forced) = (laptopA, laptopB)

;alts(unforced) = (laptopA, laptopB), neither

;rows = 12

;block = 2

;eff = 2xunforced(mnl,d) + forced(mnl,d)

;model (unforced):

U(laptopA, laptopB) = proc.dummy[-0.7]|-0.5]|-0.1] * PROCESSOR[@,1,2,3]
+ stor[0.0015] * STORAGE[256,512,1024,2048]
+ cost[-0.003] * PRICE[1200,1500,1800,2100]
/

U(neither) = none[-4.6]

;model(forced):

U(laptopA, laptopB) = proc.dummy[-0.7]|-0.5]|-0.1] * PROCESSOR
+ stor[0.0015] * STORAGE
+ cost[-0.003] * PRICE

? PROCESSOR: @(Core i3), 1(Core i5), 2(Core i7), 3(Core i9)

? STORAGE: 256 GB, 512 GB, 1024 GB, 2048 GB

? PRICE: $1200, $1500, $1800, $2100

$

Script 7.5: Unforced and forced choice

scenario variable PURPOSE, and the check constraint on line 8 guarantees that this variable maintains
the same level for both laptop options.

In the auxiliary model (aux) we added scenario variable PURPOSE as a main effect in the utility
functions, simply to define it as a dummy-coded attribute. Model aux is actually not identified, as
scenario variables can only appear as interaction effects in an unlabelled experiment. As a result,
the D-error for model aux will always be Undefined (infinite), but this is not important since we are
not optimising the design for this model.

In the model of interest (main) we can now interact the scenario variable PURPOSE with attribute
PROCESSOR to investigate whether preferences towards processor speed depend on whether the
laptop will be used at home, at the office, or both. Note that including interactions between dummy
or effects coded variables requires interacting individual levels in the choice model as shown on
lines 23-28 and 33-38.

You are considering to purchase a new laptop. Which of the following would you prefer?

Laptop A Laptop B Neither
Intel Core i3 processor Intel Core i7 processor
1 TB hard-disk drive 512 GB hard-disk drive
$1500 $1800
O O ®
® O

Figure 7.1: Laptop choice task with unforced and forced choice

130



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

design ? Laptop choice example
;alts(aux) = (laptopA, laptopB)
;alts(main) = (laptopA, laptopB)
;rows = 24
;block = 3
;eff = main(mnl,d)
;alg = mfedorov
;require: laptopA.purpose = laptopB.purpose
;model(aux): ? auxiliary model
U(laptopA, laptopB) = proc.dummy[-0.7]|-0.5]-0.1]
stor[0.0015]
cost[-0.003]
purp.dummy
;model(main): ? main model of interest
U(laptopA, laptopB)

= proc.dummy[-0.7]|-0.5]|-0.1] * PROCESSOR

+ + +

* % % X

PROCESSOR[0,1,2,3]
STORAGE[256,512,1024,2048]
PRICE[1200,1500,1800,2100]
PURPOSE[1,2,0]

+ stor[0.0015] * STORAGE
+ cost[-0.003] * PRICE
+ proc@_x_purp1 * PROCESSOR.level[@] * PURPOSE.level[1]
+ procl_x_purpl * PROCESSOR.level[1] * PURPOSE.level[1]
+ proc2_x_purpl * PROCESSOR.level[2] * PURPOSE.level[1]
+ proc@_x_purp2 * PROCESSOR.level[@] * PURPOSE.level[2]
+ proc1_x_purp2 * PROCESSOR.level[1] * PURPOSE.level[2]
+ proc2_x_purp2 * PROCESSOR.level[2] * PURPOSE.level[2]

? PROCESSOR: @(Core i3), 1(Core i5), 2(Core i7), 3(Core i9)

? STORAGE: 256 GB, 512 GB, 1024 GB, 2048 GB

? PRICE: $1200, $1500, $1800, $2100

? PURPOSE: 0(Home), 1(0ffice), 2(Home+0ffice)

$

Script 7.6: Auxiliary model to define variables

131



Considering population segments

This chapter describes how to generate designs that are optimised for multiple population segments.
In most cases, it is not necessary to account for sociodemographic variables (e.g., gender, age) and/or
socioeconomic variables (e.g., income) during the experimental design phase. But if one believes
that different population segments have substantially different preferences, then one could consider
generating designs that are optimised for different segments in the population.

8.1 Defining population segments

As shown in Equation (1.6) in Section 1.5, the Fisher information matrix for a single model is
calculated as a sum over agents. If agents belonging to different population segments have different
preferences, one could calculate the Fisher information matrix as a weighted sum over population
segments, whereby each weight indicates the proportion of a segment within the population. This
is achieved using the fisher property in Ngene. This property specifies how Fisher information
should be calculated based on data from multiple population segments to estimate a single model.

In the syntax below, Fisher information across all population segments is combined in a matrix
called MyFisher (or any other name) and is passed on to the eff property to determine the design
efficiency; in this example the D-error for estimating a multinomial logit model. Although there is
only a single underlying model when using the fisher property, different population segments in
Ngene need to be defined by specifying multiple model properties. In this example, three population
segments named pop1, pop2, and pop3 are considered. In order to be able to pool the data from
multiple population segments, all model specifications need to be identical in terms of alternatives,
attributes, attribute levels and parameters, and can only differ with respect to characteristics of the
population segments.

;eff = MyFisher(mnl,d)
; fisher (MyFisher) = ...
;model(pop1):
;model(pop2):
;model (pop3):
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The specification of the fisher property depends on whether one would like to generate a homoge-
neous design or a heterogeneous design. A homogeneous design is a single design that is simultane-
ously optimised across multiple population segments, whereas a heterogeneous design is a design in
which each population segment is given different choice tasks. These two design types are discussed
in the following subsections.

Note that the property fisher cannot be used in conjunction with conditional constraints (via the
cond property) or check constraints (via the properties reject and require) and is compatible only
with the swapping algorithm, not the modified Fedorov algorithm.

8.2 Homogeneous designs

Consider again three population segments, pop1, pop2,and pop3. Each population segment requires
an associated weight between 0 and 1, whereby the weights need to sum to 1. Suppose that the
weights are respectively 0.7, 0.1 and 0.3, indicating that the first population segment 1 has a larger
presence in the sample population than the second segment. In the following syntax, we instruct
Ngene to generate a homogeneous design called MyDesign (or any other name) that is efficient when
data from all three segments are combined with their respective weights.

; fisher (MyFisher) = MyDesign(pop1[0.7], pop2[0.1], pop3[0.3])

Instead of exogenously specifying weights for each population segment based on its expected pro-
portion in the sample of the population, it is also possible to let Ngene determine optimal weights.
Such optimal weights could inform the sampling strategy whereby more information can be gained
by over- or under-sampling certain population segments. In the syntax below, Ngene will determine
the optimal weights for each population segment between the lower bound 0.1 and the upper bound
0.9."

; fisher (MyFisher) = MyDesign(pop1[0.1:0.9], pop2[0.1:0.9], pop3[0.1:0.9]1)

Script 8.1 generates a homogeneous design for a mode choice experiment by which two population
segments are considered, namely male and female, each with a weight of 0.5 in the population as
specified on line 8. Lines 10-18 specify the model for segment male and lines 19-28 specify the
model for segment female. Note that both model specifications are identical, except for lines 11
and 21 where a variable called GENDER has been added with the suffix .covar. This suffix indicates
a fixed value of this attribute and is equal to 1 in the model for segment male and 0 in the model
for segment female, thus creating a dummy variable that is added as a main effect to the model.
Its parameter, gender, has a prior value of 0.5, indicating that males are more likely to choose the
alternative car than females. As usual, when specifying multiple model properties, property alts
must be specified for each model as indicated on lines 2-3.

The output is a single design named des1, shown in Table 8.1, omitting the values for GENDER. This
design has a D-error of 0.102213 when the data is pooled for male and female, but has an undefined
(infinite) D-error for each model for male and female separately, because the parameter gender is
not identified if all agents are only men or only women.

INote that it must be possible to let these weights sum to 1. Therefore, the sum of the upper bounds in the models
must be at least 1.
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.51, female[0.5])

GENDER.covar[1]
CTIME[10,15,20,25]

* FUELTOLL[2,3,4]

TTIMEL5,10,15,20]
WAIT[5,10,15]
TRANSFER[0, 1]
FARE[1,2,3]

* GENDER.covar[0]

CTIME[10,15,20,25]

* FUELTOLL[2,3,41]

;alts(male) = car, train
;alts(female) = car, train
;rows = 16
;block = 2
;eff = all(mnl,d)
;con
;fisher(all) = des1(male[0
;model(male):
U(car) = con_car[0.3]
+ gender[0.5] =*
+ ctime[-0.05] =
+ cost[-0.25]
/
U(train) = ttime[-0.06] *
+ wait[-0.04] =
+ trans[-0.5] =
+ cost *
;model(female):
U(car) = con_car[0.3]
+ gender[0.5]
+ ctime[-0.05] =*
+ cost[-0.25]
/
U(train) = ttime[-0.06] *
+ wait[-0.04]
+ trans[-0.5] =*
+ cost *
$

TTIMEL5,10,15,20]
WAIT[5,10,15]
TRANSFER[O, 1]
FARE[1,2,3]

(LS IS LS ]

(LS IRCES IREES IS

constant for car

gender: 1=male, 0=female
car driving time (min)
fuel and toll cost ($)

train in-vehicle time (min)
waiting time (min)

number of transfers

train fare ($)

Script 8.1: Homogeneous design with multiple population segments

Choice task Block

Car

Train

Time Fuel & toll

Time Wait Transfers Fare

1 1 10 4 5 5 0 1
2 1 25 4 20 15 0 1
3 1 10 3 10 10 1 2
4 1 15 2 15 10 1 3
5 1 25 4 5 15 0 1
6 1 15 3 15 15 1 2
7 1 25 2 10 5 0 3
8 1 15 3 20 10 1 2
9 2 25 4 20 5 1 1
10 2 20 3 5 5 1 2
11 2 20 2 15 10 0 3
12 2 15 2 10 15 0 3
13 2 10 4 20 5 0 1
14 2 10 3 15 15 0 2
15 2 20 2 10 10 1 3
16 2 20 4 5 15 1 1
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8.3 Heterogeneous designs

Alternatively, one could ask Ngene to generate a heterogeneous design as shown in the syntax below,
which produces three separate experimental designs called Design1, Design2, and Design3. Each
design belongs to a specific population segment; for example, the choice tasks in Design1 are given
to agents in the population segment pop1. The three designs are jointly optimised to estimate a
single model based on pooled data from all population segments.

; fisher(MyFisher) = Design1(pop1[0.7])) + Design2(pop2[@.1]) + Design3(pop3[0.3])

A hybrid of a homogeneous and heterogeneous design is also possible, as shown in the syntax below,
which produces two experimental designs. Design1 is given to agents in population segment pop1,
while MyDesign2 is given to agents in population segments pop2 and pop3.

; fisher(MyFisher) = Design1(pop1[0.7]1)) + Design2(pop2[0.1]1), pop3[0.3]1)
A heterogeneous design can be obtained by replacing line 8 of Script 8.1 with the following syntax.

;fisher(all) = des1(male[0.5])) + des2(female[@.5])

This generates two designs, namely, one for male and one for female, as shown in Table 8.2. Each
design contains different choice tasks but uses the same attribute levels. This heterogeneous design
has a D-error of 0.09674, which, as expected, is somewhat more efficient than the homogeneous
design in Table 8.1.

More than one sociodemographic/economic variable can be used to define segments. In Script 8.2 a
socioeconomic variable called INCOME is added as an interaction effect with cost attributes FUELTOLL
and FARE. It has two categories, namely low income defined with an average of $30,000, and high
income defined on average as $90,000. Together with the GENDER variable now four segments can
be distinguished, namely male with low income (male_low), female with low income ( female_low),
male with high income (male_high), and female with high income (male_low), each with specific
weights defined in the fisher property on lines 6—7. This script generates a design des1 for low-
income agents and a design des2 for high-income agents, each optimised for both genders.
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Male Car Train

Choice task Block Time Fuel & toll Time Wait Transfers Fare

1 1 15 3 15 15 1 2
2 1 15 2 10 15 0 3
3 1 25 2 5 5 0 3
4 1 20 2 15 10 1 3
5 1 20 3 20 10 1 2
6 1 25 4 20 5 1 1
7 1 10 4 5 5 0 1
8 1 10 4 10 15 0 1
9 2 25 3 20 5 0 2
10 2 25 4 5 15 0 1
11 2 20 4 5 5 1 1
12 2 10 3 20 5 0 2
13 2 15 2 15 10 1 3
14 2 15 2 15 10 1 2
15 2 10 3 10 10 1 2
16 2 20 2 10 15 0 3
Female Car Train

Choice task Block Time Fuel & toll Time Wait Transfers Fare

1 1 20 4 10 15 1 1
2 1 10 2 5 5 0 3
3 1 10 4 20 5 0 1
4 1 20 2 10 15 0 3
5 1 20 2 15 10 1 3
6 1 25 4 20 15 0 1
7 1 20 3 5 5 1 2
8 1 15 2 15 10 1 2
9 2 25 2 20 5 0 3
10 2 15 4 20 10 0 1
11 2 25 4 10 15 1 1
12 2 15 3 15 10 1 2
13 2 15 3 5 5 1 2
14 2 25 2 5 10 0 3
15 2 10 3 15 10 1 2
16 2 10 3 10 15 0 2

Table 8.2: Heterogeneous design with multiple population segments
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design ? mode choice example
;alts(male_low) = car, train train

train

;alts(female_low) car,

train

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

;alts(male_high) = car,
;rows = 16
;eff = all(mnl,d)

;fisher(all) = des1(male_low[@.35],

;alts(female_high) = car,

female_low[0.25])

+ des2(male_high[0.25], female_high[0.15])

;model(male_low):

U(car) = con_car[0.3]
gender[0.5]
ctime[-0.05]
cost[-0.25]

U(train) = ttime[-0.04]
wait[-0.06]
trans[-0.5]
cost
+ cost_x_inc

;model(female_low):
U(car) = con_car[0.3]
gender[0.5]
ctime[-0.05]
cost[-0.25]

+ o+ o+ N+ o+ o+ o+

N~ + + + +

U(train) = ttime[-0.04]
wait[-0.06]
trans[-0.5]
cost
+ cost_x_inc

;model(male_high):
U(car) = con_car[0.3]
gender[0.5]
ctime[-0.05]
cost[-0.25]

+ + 4+

N~ + + + +

U(train) = ttime[-0.04]
wait[-0.06]
trans[-0.5]
cost
+ cost_x_inc

;model(female_high):
U(car) = con_car[0.3]
gender[0.5]
ctime[-0.05]
cost[-0.25]

+ + 4+

I~ + + + +

U(train) = ttime[-0.04]
wait[-0.06]
trans[-0.5]
cost

cost_x_inc

+ + + +

cost_x_inc[0.0005]

cost_x_inc[0.0005]

cost_x_inc[0.0005]

cost_x_inc[0.0005]

* ¥ X X

* ¥ X X X

* X X X X * ¥ ¥ X * ¥ X X X

* ¥ ¥ *

* X ¥ ¥ X

? constant for car

? gender: 1=male, 0=female
? car driving time (min)

? fuel and toll cost ($)

GENDER. covar[1]
CTIME[L10,15,20,25]
FUELTOLL[2,3,4]
FUELTOLL * INCOME.covar[30]

TTIME[5,10,15,20]
WAIT[5,10,15]
TRANSFER[0, 1]
FARE[1,2,3]

FARE * INCOME.covar[30]

GENDER. covar[0]
CTIME[10,15,20,25]
FUELTOLLL2, 3, 4]

FUELTOLL * INCOME.covar[30]

TTIMEL5,10,15,20]
WAITL5,10,15]
TRANSFER[0, 1]
FAREL1,2,3]

FARE * INCOME.covar[30]

GENDER. covar[1]
CTIME[10,15,20,25]
FUELTOLL[2,3,4]

FUELTOLL * INCOME.covar[90]

TTIME[5,10,15,20]
WAIT[5,10,15]
TRANSFERL[O, 1]
FARE[1,2,3]

FARE * INCOME.covar[90]

GENDER. covar[0]
CTIME[L10,15,20,25]
FUELTOLL[2,3,4]

FUELTOLL * INCOME.covar[90]

TTIME[5,10,15,20]
WAITL5,10,15]
TRANSFER[O, 1]
FARE[1,2,3]

FARE * INCOME.covar[90]

Script 8.2: Design with more population segments
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Agent-specific attribute levels

This chapter describes how to generate designs in which the attribute levels in choice tasks are
tailored to the choice context of an agent. Each agent makes decisions within their own context, and
therefore relevant attribute levels may vary from agent to agent. For example, for parcel delivery
choice, delivery times may depend on whether one lives in a metropolitan area or rural area; for
mode choice to work, travel times depend on how far one lives from the workplace; for car insurance
choice, insurance premiums depend on the value of the car that one owns; for medication choice,
risk of side effects may depend on patient characteristics, etc. Choice tasks with familiar attribute
levels also tend to reduce hypothetical bias in choice experiments. Consequently, it is advised to
employ attribute levels tailored to the particular circumstances the agent finds itself in.

9.1 Homogeneous design

In this section, it is explained how to generate a single (homogeneous) design for all agents, even
if their attribute levels vary. A homogeneous design may be useful when the aim is to conduct a
within-subject study, such that any differences found can be attributed to variations in the choice
context.

In the absence of parameter priors, one could simply use design coding to generate a single orthog-
onal or efficient design. Once the design has been generated, one can replace (relabel) the design
coding with the relevant attribute levels for each agent in the survey instrument.

Consider an experiment of public transport choice with two unlabelled alternatives in the context
of travelling to work. Different agents have different commuting distances and therefore should
be shown different attribute levels depending on their reported distance to work. Suppose that the
analyst asks the agent in the survey how long their commute by public transport would take, see,
for example, Figure 9.1. Based on their response, the distance class of the agent is classified as Short,
Medium, or Long. For each distance class, one can pre-define sets of attribute levels for in-vehicle
travel time, waiting time, and fare (ticket cost) as shown in Table 9.1. If an agent answers that they
have a short commute distance, then they will be shown choice tasks with low in-vehicle travel
times, low waiting times, and low fares.
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Multiple choice question. Consider travelling to work by public transport.
How long would this trip typically take?

O
O

Short (less than 20 minutes in total)
Medium (about 20-60 minutes in total)

Long (more than 60 minutes in total)

Script 9.1 shows an example of how such a design could be generated in Ngene, where the public
transport alternatives pt1 and pt2 have attributes TIME, WAIT, TRANSFERS, and FARE. All attributes
have been dummy coded, which is often useful when using noninformative priors, see Section
5.2. After design generation, all design-coded levels will need to be replaced with distance-specific
attribute levels, except TRANSFERS since this attribute is not distance-specific and contains the actual

Figure 9.1: Query about distance class in survey

Commuting distance Level Time Wait  Fare
0 4min 2 min $1
Short 1 8min 5 min $2
2 12min 8 min $3
0 15min 7 min $2
Medium 1 30 min 10min $4
2 45min 13 min  $6
0 45min 10 min  $3
Long 1 60 min 15min  $6
2 75min 20 min  $9

Table 9.1: Predefined attribute levels for different distance classes

number of transfers.

Table 9.2(a) presents the efficient design generated by Script 9.1. The relabelling of this design for
the short distance class is shown in Table 9.2(b). For example, for short distances we relabel the
in-vehicle travel time according to Table 9.1as 0 — 4,1 — 8, and 2 — 12.

design
;alts = (pt1,
;rows = 12
;eff = (mnl,d)
;model: ?
U(pt1, pt2) =
+
+
+
$

pt2)

using design coding

time.dummy[-] =*
wait.dummy[-] =*
trans.dummy[-] *
cost.dummy[-] *

TIME[O,1,2]
WAIT[O,1,2]

TRANSFERS[0,1]

FARE[O,1,2]

Script 9.1: Single design for all distance classes using design coding
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Public transport 1

Public transport 2

Choice task Time Wait Transfers’ Fare Time Wait Transfers’ Fare
1 0 2 1 2 2 0 0 1
2 1 2 0 0 2 0 1 2
3 0 2 0 1 2 1 1 0
4 1 0 0 2 0 2 1 0
5 1 0 1 0 2 1 0 1
6 2 1 0 2 0 0 1 1
7 1 1 1 1 0 2 0 0
8 2 0 0 0 1 1 1 1
9 2 1 0 1 1 0 1 2
10 0 1 1 0 1 2 0 2
11 2 2 1 1 0 1 0 2
12 0 0 1 2 1 2 0 0
 Contains actual levels. o . . . .
(a) Original design using design coding
Public transport 1 Public transport 2
Choice task Time Wait Transfers Fare Time Wait Transfers Fare
1 4 8 1 3 12 2 0 2
2 8 8 0 1 12 2 1 3
3 4 8 0 2 12 5 1 1
4 8 2 0 3 4 8 1 1
5 8 2 1 1 12 5 0 2
6 12 5 0 3 4 2 1 2
7 8 5 1 2 4 8 0 1
8 12 2 0 1 8 5 1 2
9 12 5 0 2 8 2 1 3
10 4 5 1 1 8 8 0 3
11 12 8 1 2 4 5 0 3
12 4 2 1 3 8 8 0 1

(b) Relabelled design with actual levels for short distance class

Table 9.2: Relabelling attribute levels for specific distance classes
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Choice task 1. Consider travelling to work by public transport.
Which option do you prefer?

Public transport A Public transport B
4 minutes in-vehicle time 12 minutes in-vehicle time
8 minutes waiting time 2 minutes waiting time
1 transfer no transfer
$3.00 $2.00
O O

(a) Short distance class

Choice task 1. Consider travelling to work by public transport.
Which option do you prefer?

Public transport A Public transport B
45 minutes in-vehicle time 75 minutes in-vehicle time
20 minutes waiting time 10 minutes waiting time
1 transfer no transfer
$9.00 $6.00
O O

(b) Long distance class

Figure 9.2: First choice task for different distance classes

The first choice task in this table is illustrated in Figure 9.2(a) for agents who reported a short
distance to work, see Figure 9.1, while the first choice task for agents who reported a long distance
to work is shown in Figure 9.2(b).

When parameter priors are available, a more efficient homogeneous design can be generated by
explicitly considering different attribute levels during the design generation phase. Taking into
account the same distance classes and attribute levels as shown in Table 9.1, a homogeneous design
with informative priors could be generated using Script 9.2. In this script, three different models are
specified, called short, medium, and long for each of the distance classes. Each model formulation
in this script uses distance-specific levels for attributes TIME, COST and FARE. Parameter priors
may differ across model specifications. It is important that the number of levels of each attribute is
consistent across all model formulations.

To generate such a homogeneous design, the fisher property introduced in Chapter 8 can be used,
which assumes joint estimation across all distance classes. In this case, on line 7 of Script 9.2, a
homogeneous design called des1 is generated jointly for all distance classes, with the assumption
that 20% of the respondents have a short distance, 70% a medium distance, and 10% a long distance.
Note that no constraints (neither conditional constraints nor check constraints, see Section 6) can
be applied in combination with the fisher property.

The generated homogeneous design is shown in Table 9.3. Although it looks like there are three
different designs, one for each distance class, they actually represent the same underlying homoge-
neous design. For example, the profiles for alternative “Public transport 1" in the first choice task
are (8,5,0,2), (30,10,0,4), and (60,15,0,6) for short, medium, and long, respectively, which represent
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18

19

20

21

22

23

design

;alts(short) = (pt1, pt2)
;alts(medium) = (pt1, pt2)
;alts(long) = (ptl1, pt2)
;rows = 12

;eff = alldistances(mnl,d)
; fisher(alldistances) = des1(short[0.2], medium[@.7], long[0.1]1)
;model(short):

U(pt1, pt2) = time[-0.02] * TIME[4,8,12] ? in-vehicle travel time
+ wait[-0.03] * WAIT[2,5,8] ? waiting time
+ trans[-0.3] * TRANSFERS[Q,1] ? number of transfers
+ cost[-0.2] * FARE[1,2,3] ? fare

;model(medium):

U(pt1l, pt2) = time[-0.015] =* TIME[15,30,45] ? in-vehicle travel time
+ wait[-0.02] * WAIT[5,10,15] ? waiting time
+ trans[-0.3] * TRANSFERS[Q,1] ? number of transfers
+ cost[-0.15] * FARE[2,4,6] ? fare

;model(long):

U(pt1, pt2) = time[-0.01] * TIME[45,60,75] ? in-vehicle travel time
+ wait[-0.01] * WAIT[10,15,20] ? waiting time
+ trans[-0.25] * TRANSFERS[Q,1] ? number of transfers
+ cost[-0.1] * FARE[3,6,9] ? fare

Script 9.2: Homogeneous design with informative priors

the middle levels for the time and fare attributes and the lowest level for the wait attribute. In other
words, the three designs would be identical when converted to design coding.

9.2 Heterogeneous design

A heterogeneous design is generally more efficient than a homogeneous design, but will have less
statistical power when making comparisons across distance classes. A heterogeneous design for the
same public transport choice example can be generated by replacing the fisher property in Script
9.2 with the following syntax:

; fisher(alldistances) = des1(short[0.2]) + des2(medium[@.7]) + des3(long[0.1])

In this syntax, three entirely different designs are created, called des1, des2, and des3, again as-
suming joint estimation on data from the three distance classes. The resulting heterogeneous design
is shown in Table 9.4. In contrast to the homogeneous design in Table 9.3, there is no similarity
between the choice tasks for different distance classes. In the survey instrument, one would imple-
ment a separate choice experiment for each distance class, and based on the choice context of an
agent, the agent is directed (branched) to the appropriate experiment.

9.3 Library of designs

Instead of simultaneously generating a design for all agents, one could create separate designs for
different sets of attribute levels. We refer to this as a library of designs, see also Section 1.5.4. This is
essentially a heterogeneous design in which each design is generated separately. The advantage of
a library of designs over a heterogeneous design discussed in Section 9.2 is that it gives the analyst
full flexibility to define attribute levels, specify utility functions, and apply constraints on attribute
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Short Public transport 1 Public transport 2
Choice task Time Wait Transfers Fare Time Wait Transfers Fare
1 8 5 0 2 8 5 1 1
2 4 5 0 3 12 5 1 2
3 12 8 1 1 4 2 0 3
4 4 8 0 2 12 2 1 2
5 4 8 1 3 8 2 0 1
6 8 2 0 3 8 8 1 1
7 12 5 0 2 4 5 1 2
8 8 2 1 1 8 8 0 3
9 8 8 1 2 12 2 0 2
10 4 2 1 1 12 8 0 3
11 12 5 0 1 4 5 1 3
12 12 2 1 3 4 8 0 1
Medium Public transport 1 Public transport 2
Choice task Time Wait Transfers Fare Time Wait Transfers Fare
1 30 10 0 4 30 10 1 2
2 15 10 0 6 45 10 1 4
3 45 15 1 2 15 5 0 6
4 15 15 0 4 45 5 1 4
5 15 15 1 6 30 5 0 2
6 30 5 0 6 30 15 1 2
7 45 10 0 4 15 10 1 4
8 30 5 1 2 30 15 0 6
9 30 15 1 4 45 5 0 4
10 15 5 1 2 45 15 0 6
11 45 10 0 2 15 10 1 6
12 45 5 1 6 15 15 0 2
Long Public transport 1 Public transport 2
Choice task Time Wait Transfers Fare Time Wait Transfers Fare
1 60 15 0 6 60 15 1 3
2 45 15 0 9 75 15 1 6
3 75 20 1 3 45 10 0 9
4 45 20 0 6 75 10 1 6
5 45 20 1 9 60 10 0 3
6 60 10 0 9 60 20 1 3
7 75 15 0 6 45 15 1 6
8 60 10 1 3 60 20 0 9
9 60 20 1 6 75 10 0 6
10 45 10 1 3 75 20 0 9
11 75 15 0 3 45 15 1 9
12 75 10 1 9 45 20 0 3

Table 9.3: Homogeneous design for three distance classes
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Short Public transport 1 Public transport 2

Choice task Time Wait Transfers Fare Time Wait Transfers Fare

1 12 5 1 1 4 5 0 2

2 4 8 0 1 8 2 1 3

3 12 2 0 2 4 8 1 3

4 4 8 1 3 8 2 0 1

5 4 2 0 3 12 8 1 2

6 8 5 1 3 12 5 0 1

7 8 5 0 2 12 5 1 1

8 12 2 1 3 4 8 0 1

9 12 2 0 1 8 8 1 3

10 8 5 0 1 4 5 1 3

11 8 8 1 2 12 2 0 2

12 4 8 1 2 8 2 0 2

Medium Public transport 1 Public transport 2

Choice task Time Wait Transfers Fare Time Wait Transfers Fare

1 45 5 1 4 15 15 0 4

2 30 15 1 2 15 5 0 6

3 15 15 1 6 45 5 0 2

4 30 15 0 4 30 5 1 4

5 15 10 1 4 45 10 0 4

6 30 15 0 2 30 10 1 6

7 45 10 0 6 30 10 1 2

8 30 10 0 2 30 5 1 6

9 15 5 0 6 45 15 1 2

10 45 5 1 2 15 15 0 6

11 15 5 1 4 45 15 0 4

12 45 10 0 6 15 10 1 2

Long Public transport 1 Public transport 2

Choice task Time Wait Transfers Fare Time Wait Transfers Fare

1 45 15 1 6 75 15 0 6

2 60 15 0 9 60 15 1 3

3 75 10 1 6 45 20 0 6

4 60 10 0 3 45 20 1 9

5 45 15 0 3 75 10 1 9

6 75 20 1 3 45 10 0 9

7 45 15 1 6 60 15 0 6

8 60 10 0 9 60 20 1 3

9 45 10 1 3 75 20 0 9

10 75 20 0 9 60 10 1 3

11 60 20 1 9 75 10 0 3

12 75 20 0 6 45 15 1 6

Table 9.4: Heterogeneous design for three distance classes
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Open question. Consider your most recent trip to work by public transport.
Please enter the details of this trip.

In-vehicle travel time minutes
Waiting time m minutes
Number of transfers

Fare dollar

Figure 9.3: Query about recent trip characteristics in survey

level combinations (see Chapter 6). For these reasons, a library of designs is often the preferred
approach.

Let us again consider the public transport choice experiment. Script 9.3 shows three scripts that
need to be run separately, one for each distance class. The number of attribute levels can differ across
classes; for example, attribute TRANSFERS in the script for long distance allows up to 2 transfers while
in the other scripts it only allows at most 1 transfer. In addition, we added conditional constraints
to allow only lower fares with shorter travel times and higher fares with longer travel times.

The generated library of designs is shown in Table 9.5. Depending on the commute distance reported
by the agent earlier in the survey (for example, see Figure 9.1), the agent is shown the choice
experiment based on the relevant design in the library.

9.4 Pivot designs

Instead of predefined attribute levels, one could create a pivot design containing relative or absolute
pivots around the reference levels reported by the agent in the survey. Pivots are mainly useful
for quantitative attributes. Based on reference levels and pivots, agent-specific attribute levels are
calculated on the fly within the survey instrument.

In Ngene, pivot designs can be generated by first assigning reference levels for each attribute in
the reference alternative using the suffix .ref and then specifying the other alternatives whereby
attributes can have the suffix .piv to indicate pivots around the reference levels. A relative pivot is
indicated with a percentage; for example, a pivot attribute level of -25% means that its level is 25
per cent less than the reference level, and 10% means ten per cent more than the reference level. An
absolute pivot is indicated with numbers; for example, a pivot attribute level of -2 means that its
level is two lower than the reference level, and 1 means one higher than the reference level.

Figure 9.3 shows an example of an open survey question where the agent is queried about a recent
trip to obtain such reference levels. To avoid any typing mistakes by the agent in open text fields,
one could instead use drop-down lists from which the agent can select.

Pivot designs are not without risk, and it is important to make sure that logic is implemented in the
survey instrument to ensure that reported reference levels are valid and that on the fly calculated
attribute levels are feasible. For example, suppose that the agent has entered a waiting time of 0.
Then any relative pivots would again result in a zero waiting time (since x% on top of zero is still
zero), which is undesirable. In addition, if the agent would have specified a low fare, or even 0 fare,
then with absolute pivots the resulting fare may become negative.
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design ? Short distance
;alts = (pt1, pt2)

;rows = 12

;eff = (mnl,d)

;cond:

if(pt1.TIME=4, pt1.FARE<3), if(pt2.TIME=4, pt2.FARE<3),
if(pt1.TIME=12, pt1.FARE>1), if(pt2.TIME=12, pt2.FARE>1)

;model:

U(pt1, pt2) = time[-0.02] * TIME[4,8,12] ? in-vehicle travel time
+ wait[-0.03] * WAIT[2,5,8] ? waiting time
+ trans[-0.3] * TRANSFERS[0,1] ? number of transfers
+ cost[-0.2] * FAREL1,2,3] ? fare

$

design ? Medium distance

;alts = (pt1, pt2)

;rows = 12

;eff = (mnl,d)

;cond:

if(pt1.TIME=15, pt1.FARE<6), if(pt2.TIME=15, pt2.FARE<6),
if(pt1.TIME=45, pt1.FARE>2), if(pt2.TIME=45, pt2.FARE>2)

;model:

U(pt1, pt2) = time[-0.015] =* TIME[15,30,45] ? in-vehicle travel time
+ wait[-0.02] * WAIT[5,10,15] ? waiting time
+ trans[-0.3] % TRANSFERS[Q,1] ? number of transfers
+ cost[-0.15] * FARE[2,4,6] ? fare

$

design ? Long distance

;alts = (pt1, pt2)

;rows = 12

;eff = (mnl,d)

;cond:

if(pt1.TIME=45, pt1.FARE<9), if(pt2.TIME=45, pt2.FARE<9),
if(pt1.TIME=75, pt1.FARE>3), if(pt2.TIME=75, pt2.FARE>3)

;model:

U(pt1, pt2) = time[-0.01]
+ wait[-0.01]
+ trans[-0.25]
+ cost[-0.1]

* TIME[45,60,75]

* WAIT[10,15,20]

* TRANSFERS[0,1,2]
* FARE[3,6,9]

? in-vehicle travel time
? waiting time

? number of transfers

? fare

Script 9.3: Library of designs
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Short Public transport 1 Public transport 2

Choice task Time Wait Transfers Fare Time Wait Transfers Fare

1 4 8 1 2 8 2 0 2

2 8 5 1 2 12 5 0 2

3 4 2 0 2 8 8 1 1

4 8 5 1 3 12 5 0 2

5 8 2 0 3 8 5 1 1

6 4 5 1 1 12 5 0 3

7 12 8 0 2 4 2 1 2

8 4 8 0 1 12 2 1 3

9 12 8 0 3 4 2 1 1

10 12 5 1 3 4 8 0 1

11 12 2 0 2 4 8 1 2

12 8 2 1 1 8 8 0 3

Medium Public transport 1 Public transport 2

Choice task Time Wait Transfers Fare Time Wait Transfers Fare

1 15 15 0 2 45 10 1 6

2 15 5 1 4 45 15 0 4

3 45 10 0 4 15 10 1 4

4 45 15 0 6 15 5 1 2

5 30 15 1 6 45 5 0 4

6 45 5 0 4 15 15 1 4

7 15 10 1 2 45 10 0 6

8 45 5 1 6 15 15 0 2

9 30 10 1 2 30 5 0 6

10 15 5 0 4 30 15 1 2

11 30 10 1 2 30 10 0 6

12 30 15 0 4 30 5 1 4

Long Public transport 1 Public transport 2

Choice task Time Wait Transfers Fare Time Wait Transfers Fare

1 45 15 2 6 75 15 0 6

2 75 20 1 9 45 10 2 3

3 75 15 1 9 45 20 1 3

4 75 10 2 6 45 15 0 6

5 60 20 0 9 60 10 1 3

6 60 10 0 6 60 20 2 3

7 45 20 0 3 60 15 2 6

8 60 20 1 3 60 10 1 9

9 45 15 1 3 75 10 1 9

10 60 15 2 3 60 15 0 9

11 45 10 2 6 75 20 0 6

12 75 10 0 6 45 20 2 6

Table 9.5: Library of designs for three distance classes
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design ? Public transport choice with reference alternative
;alts = (ref, pt1, pt2)

;rows = 12

;eff = (mnl,d)

;alg = mfedorov(stop = total(10000 iterations))

;model:
U(ref)

time[-0.015] * TIME.ref[30] ? in-vehicle travel time (min)
wait[-0.02] * WAIT.ref[10] ? waiting time (min)
?
?

+

+ trans[-0.3] * TRANSFERS.ref[0] number of transfers

+ cost[-0.15] * FARE.ref[4] fare ($)
/
U(pt1, pt2) = time * TIME.piv[-50%,0%,50%1(3-5,3-5,3-5)
+ wait * WAIT.piv[-30%,0%,30%](3-5,3-5,3-5)
+ trans * TRANSFERS2[0,1](4-8,4-8)
+ cost * FARE.piv[-2,0,2](3-5,3-5,3-5)

Script 9.4: Pivot design around single set of reference levels

Pivot designs can be optimised around a single set of reference levels or can consider multiple sets
of reference levels. These options are discussed in the following subsections.

9.4.1 Pivot designs optimised around a single set of reference levels

When only a single set of reference levels is used, these reference levels need to be as representative as
possible for all agents so that the design is relatively efficient for each agent. An obvious choice would
be to use reference levels based on average attributes values expected in the sample population.

Script 9.4 illustrates how to generate a pivot design for the public transport choice experiment where
only a single set of reference levels is used. In lines 7—-10 of this script, the reference levels for TIME
, WAIT, and FARE have been chosen as the midpoints of the attribute levels of the medium distance
class, namely 30 minutes, 10 minutes, and $4, respectively. The reference value for TRANSFER was
set to 0 as the expected most typical value. For illustration purposes, relative pivots were chosen
for attributes TIME and WAIT, while absolute pivots are used for attribute FARE. Note that not all
attributes need to be pivoted, as shown in this script for attribute TRANSFER. Since we use the
modified Fedorov algorithm in this script, attribute level frequency constraints have been applied
to all attributes. To calculate design efficiency, Ngene applies the pivots to the reference levels to
obtain the actual attribute levels.

The generated pivot design is shown in Table 9.6, omitting the reference alternative. These attribute
levels are expressed in pivots (except for the transfer attribute), and to emphasise this, we added a
plus symbol (+) to positive pivots in this table. To apply the pivot design, consider the agent that
reported the attribute levels of their recent trip shown in Figure 9.3. Table 9.7 shows the attribute
levels for the two hypothetical public transport options that are generated on the fly within the
survey instrument by applying the pivots in Table 9.6 to these reference levels. The first choice task
in Table 9.7 is shown in Figure 9.4, where the levels of time attributes shown to the agent have been
rounded to reduce cognitive burden.

Script 9.4 optimises the pivot design under the assumption that the reference alternative is shown
in each choice task. Suppose that one would like to optimise the pivot design without showing
the reference alternative. This can be achieved by specifying an auxiliary model; see Section 7.2.
Script 9.5 generates a pivot design under the assumption that the reference alternative is not shown.
Auxiliary model withref defines the reference levels, while the pivot design is optimised only for
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Public transport 1 Public transport 2

Task Time Wait Transfers’ Fare Time Wait Transfers’ Fare
1 0% -30% 1 -2 -50% +30% 1 +2
2 +50% +30% 1 -2 -50% -30% 0 +2
3 +50% +30% 0 -2 -50% -30% 1 0
4 -50% 0% 1 -2 +50% +30% 0 -2
5 0% -30% 1 +2 +50% +30% 1 -2
6 0% -30% 1 +2 -50% 0% 1 -2
7 +50% -30% 0 +2 0% 0% 1 -2
8 +50% 0% 1 -2 0% 0% 0 0
9 +50% -30% 0 0 -50% +30% 1 +2
10 -50% 0% 1 +2 0% -30% 1 -2
11 -50% +30% 0 0 +50% -30% 1 0
12 -50% +30% 1 0 +50% -30% 0 +2

 Contains actual levels.

Table 9.6: Pivot design based on single set of reference levels
Public transport 1 Public transport 2
Task Time Wait Transfers Fare Time Wait Transfers Fare
1 35 5.6 1 3.5 17.5 10.4 1 7.5
2 52.5 10.4 1 3.5 17.5 5.6 0 7.5
3 52.5 104 0 3.5 17.5 5.6 1 5.5
4 17.5 8 1 3.5 52.5 10.4 0 3.5
5 35 5.6 1 7.5 52.5 10.4 1 3.5
6 35 5.6 1 7.5 17.5 8 1 3.5
7 52.5 5.6 0 7.5 35 8 1 3.5
8 52.5 8 1 3.5 35 8 0 5.5
9 52.5 5.6 0 5.5 17.5 10.4 1 7.5
10 17.5 8 1 7.5 35 5.6 1 3.5
11 17.5 10.4 0 5.5 52.5 5.6 1 5.5
12 17.5 104 1 5.5 52.5 5.6 0 7.5

Table 9.7: Attribute levels after applying pivots to reference levels in Figure 9.3

First choice task. Consider again your recent trip to work by public transport. For your next
trip to work, which of the following options do you prefer?

Recent public transport Public transport 1 Public transport 2
35 minutes in-vehicle time 35 minutes in-vehicle time 18 minutes in-vehicle time
8 minutes waiting time 6 minutes waiting time 10 minutes waiting time
1 transfer 1 transfer 1 transfer
$5.50 $3.50 $7.50
O O O

Figure 9.4: Choice task with attribute levels pivoted around reported reference levels
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design ? Public transport choice without reference alternative

;alts(withref) = ref, pt1, pt2
;alts(withoutref) = (pt1, pt2)
;rows = 12

;eff = withoutref(mnl,d)
;model(withref): ? axuliary model with reference alternative

U(ref) = time[-0.015] * TIME.ref[30] ? in-vehicle travel time (min)
+ wait[-0.02] * WAIT.ref[10] ? waiting time (min)
+ trans[-0.3] * TRANSFERS.ref[0] ? number of transfers
+ cost[-0.15] * FARE.ref[4] ? fare (%)
/
U(pt1, pt2) = time * TIME.piv[-50%,0%,50%](3-5,3-5,3-5)

+ wait * WAIT.piv[-30%,0%,30%](3-5,3-5,3-5)

+ trans * TRANSFERS2[0,1](4-8,4-8)

+ cost * FARE.piv[-2,0,2](3-5,3-5,3-5)
;model(withoutref): ? model of interest without reference alternative
U(pt1, pt2) = time * TIME.piv[-50%,0%,50%]1(3-5,3-5,3-5)

+ wait * WAIT.piv[-30%,0%,30%](3-5,3-5,3-5)

+ trans * TRANSFERS2[0,1](4-8,4-8)

+ cost * FARE.piv[-2,0,2](3-5,3-5,3-5)
$

Script 9.5: Pivot design without showing reference alternative

the model without the reference alternative withoutref, as indicated in line 5. We omitted the
parentheses around the alternatives on line 2 to avoid unnecessary dominance checks with respect
to the reference alternative.

9.4.2 Pivot designs optimised around multiple sets of reference levels

Instead of optimising a design pivot design only around a single set of (average/typical) attribute
levels, one could optimise the design across multiple sets of reference levels. This is achieved using
the fisher property that was introduced in Chapter 8.

Script 9.6 illustrates how to generate a homogeneous pivot design that is optimised across the
three distance classes as specified in models short, medium, and long. Each class has the same pivot
levels, but differs with respect to the reference levels. For example, model short has a reference level
for TIME of 8 minutes, while models medium and long have reference levels of 30 and 60 minutes,
respectively. The fact that this is a homogeneous design can be seen from line 7 in the fisher
property, which indicates that only a single design called des1 is being generated, simultaneously
optimised for the three distance classes with provided weights. Table 9.8 shows the generated
homogeneous pivot design, which can be used for all distance classes.

In Script 9.6 we can replace line 7 with the syntax below to generate a heterogeneous pivot design.

; fisher(alldistances) = des1(short[0.2]) + des2(medium[@.7]) + des3(long[0.1])

This will create three designs, called des1, des2, and des3 for each of the three distance classes. The
generated heterogeneous design is shown in Table 9.9, where agents of different distance classes
are shown different sets of choice tasks.
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design ? Public transport choice example

;alts(short)
;alts(medium)
;alts(long)
;rows = 10

;eff = alldistances(mnl,d)
; fisher(alldistances) = des1(short[0.2],medium[@.7],1long[0.1])
;model(short): ? short distance

U(ref) = time[-0.015]
+ wait[-0.02]
+ trans[-0.3]
+ cost[-0.15]

/
U(pt1, pt2)

+
+
+

time
wait
trans
cost

* ¥ ¥ X

TIME
WAIT

= (ref, pt1, pt2)
= (ref, pt1, pt2)
(ref, pt1, pt2)

.ref[8] ? in-vehicle travel time (min)
.ref[5] ? waiting time (min)

TRANSFERS.ref[@] ? number of transfers

FARE

*
*
*
*

.ref[2] ? fare (%)

TIME.piv[-30%,-10%,10%, 30%, 50%]
WAIT.piv[-50%,-25%,0%,25%,50%]
TRANSFERS2[0,1]
FARE.piv[-2,-1,0,1,2]

;model(medium): ? medium distance

U(ref) = time[-0.015]
+ wait[-0.02]
+ trans[-0.3]
+ cost[-0.15]

/
U(pt1, pt2)

+ + +

time
wait
trans
cost

*

*
*
*

TIME
WAIT

.ref[30]
.ref[10]

TRANSFERS. ref[0]

FARE

* ¥ X

*

.ref[4]

TIME.piv[-30%,-10%,10%,30%, 50%]
WAIT.piv[-50%,-25%,0%, 25%,50%]
TRANSFERS2[0, 1]
FARE.piv[-2,-1,0,1,2]

;model(long): ? long distance

U(ref) = time[-0.015] * TIME.ref[60]

* WAIT.ref[15]

* TRANSFERS.ref[1]

+ wait[-0.02]
+ trans[-0.3]
+ cost[-0.15]

/
U(pt1, pt2)

+ + +

time
wait
trans
cost

*

FARE

* ¥ X X

.ref[6]

TIME.piv[-30%,-10%,10%,30%, 50%]
WAIT.piv[-50%,-25%,0%,25%,50%]
TRANSFERS2[0,1]
FARE.piv[-2,-1,0,1,2]

Script 9.6: Homogeneous pivot design around multiple sets of reference levels
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Public transport 1

Public transport 2

Task Time Wait Transfers’ Fare Time Wait Transfers” Fare
1 -10% +25% 1 +2 +10% -50% 0 -2
2 +50% 0% 0 -1 -30% 0% 1 +1
3 +10% +50% 1 -2 +30% -50% 0 +2
4 -10%  +25% 0 0 +30% -25% 1 0
5 +10% +50% 0 -1 +10% -25% 1 +1
6 +30% -50% 1 -2 -10%  +50% 0 +2
7 -30% -50% 0 +1 +50% +50% 1 -1
8 -30% 0% 1 0 +50% +25% 0 -1
9 +30% -25% 1 +1 -10%  +25% 0 0
10 +50% -25% 0 +2 -30% 0% 1 -2

T Contains actual levels.

Table 9.8: Homogeneous pivot design based on multiple sets of reference levels
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Short

Public transport 1

Public transport 2

Choice task Time Wait Transfers’ Fare Time Wait Transfers” Fare
1 -10% 0% 0 +1 +30% 0% 1 -1
2 +50% -25% 1 0 -30% +25% 0 0
3 -10% +25% 0 +2 +10% -50% 1 -2
4 +30% -50% 0 +1 +10% +50% 1 -1
5 +10% -50% 1 -2 -10% +50% 0 +2
6 +50% -25% 0 +2 -30% 0% 1 -2
7 -30% +25% 1 -2 +50% -25% 0 +2
8 +10% +50% 1 -1 +30% -25% 0 +1
9 +30% 0% 1 -1 -10% +25% 0 +1
10 -30% +50% 0 0 +50% -50% 1 0

 Contains actual levels.

Medium Public transport 1 Public transport 2

Choice task Time Wait Transfers’ Fare Time Wait Transfers” Fare
1 +50% -25% 0 0 -10% +25% 1 +1
2 -10% 0% 1 +1 +30% 0% 0 -1
3 +10% -50% 0 -2 -10% +50% 1 +2
4 +50% +50% 0 -1 -30% -50% 1 0
5 +10% -50% 1 +1 +10% +50% 0 -1
6 -10% +25% 0 +2 +30% 0% 1 -2
7 -30% +25% 0 0 +50% -25% 1 0
8 +30% +50% 1 -1 +10% -50% 0 +1
9 -30% 0% 1 -2 +50% -25% 0 +2
10 +30% -25% 1 +2 -30% +25% 0 -2

T Contains actual levels.

Long Public transport 1 Public transport 2

Choice task Time Wait Transfers’ Fare Time Wait Transfers’ Fare
1 -30% -50% 1 +1 +50% +50% 0 -1
2 +50% 0% 1 -1 -30% 0% 0 +1
3 +10% +25% 0 0 +10% -25% 1 0
4 -30% 0% 1 +2 +50% 0% 0 -2
5 +10% +25% 0 -2 +10% -25% 1 +2
6 +30% -25% 0 0 -10% +25% 1 0
7 -10% -50% 0 +1 +30% +50% 1 -1
8 -10% +50% 1 +2 +30% -50% 0 -2
9 +30% +50% 1 -1 -30% -50% 0 +1
10 +50% -25% 0 -2 -10% +25% 1 +2

T Contains actual levels.

Table 9.9: Heterogeneous pivot design based on multiple sets of reference levels
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